DOI QR코드

DOI QR Code

Imperatorin Suppresses Degranulation and Eicosanoid Generation in Activated Bone Marrow-Derived Mast Cells

  • Jeong, Kyu-Tae (Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry) ;
  • Lee, Eujin (Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry) ;
  • Park, Na-Young (Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry) ;
  • Kim, Sun-Gun (Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry) ;
  • Park, Hyo-Hyun (Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry) ;
  • Lee, Jiean (R&D Center, Morechem Co., Ltd.) ;
  • Lee, Youn Ju (School of Medicine, Catholic University of Daegu) ;
  • Lee, Eunkyung (Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry)
  • Received : 2015.02.25
  • Accepted : 2015.06.17
  • Published : 2015.09.01

Abstract

Imperatorin has been known to exert many biological functions including anti-inflammatory activity. In this study, we investigated the inhibitory effects of imperatorin on the production of inflammatory mediators in mouse bone marrow-derived mast cells (BMMC). Imperatorin inhibited degranulation and the generation of eicosanoids (leukotriene $C_4$ ($LTC_4$) and prostaglandin $D_2$ ($PGD_2$) in IgE/antigen (Ag)-stimulated BMMC. To elucidate the molecular mechanism involved in this process, we investigated the effect of imperatorin on intracellular signaling in BMMC. Biochemical analyses of the IgE/Ag-mediated signaling pathway demonstrated that imperatorin dramatically attenuated degranulation and the production of 5-lipoxygenase-dependent $LTC_4$ and cyclooxygenase-2-dependent $PGD_2$ through the inhibition of intracellular calcium influx/phospholipase $C{\gamma}1$, cytosolic phospholipase $A_2$/mitogen-activated protein kinases and/or nuclear factor-${\kappa}B$ pathways in BMMC. These results suggest that the effects of imperatorin on inhibition of degranulation and eicosanoid generation through the suppression of multiple steps of IgE/Ag-mediated signaling pathways would be beneficial for the prevention of allergic inflammation.

Keywords

References

  1. Ban, H. S., Lim, S. S., Suzuki, K., Jung, S. H., Lee, S., Lee, Y. S., Shin, K. H. and Ohuchi, K. (2003) Inhibitory effects of furanocoumarins isolated from the roots of Angelica dahurica on prostaglandin E2 production. Planta Med. 69, 408-412. https://doi.org/10.1055/s-2003-39702
  2. Boyce, J. A. (2003) Mast cells: beyond IgE. J. Allergy Clin. Immunol. 111, 24-32; quiz 33. https://doi.org/10.1067/mai.2003.60
  3. Fischer, L., Poeckel, D., Buerkert, E., Steinhilber, D. and Werz, O. (2005) Inhibitors of actin polymerisation stimulate arachidonic acid release and 5-lipoxygenase activation by upregulation of $Ca^{2+}$mobilisation in polymorphonuclear leukocytes involving Src family kinases. Biochim. Biophys. Acta 1736, 109-119. https://doi.org/10.1016/j.bbalip.2005.07.006
  4. Flamand, N., Lefebvre, J., Surette, M. E., Picard, S. and Borgeat, P. (2006) Arachidonic acid regulates the translocation of 5-lipoxygenase to the nuclear membranes in human neutrophils. J. Biol. Chem. 281, 129-136. https://doi.org/10.1074/jbc.M506513200
  5. Gilfillan, A. M. and Rivera, J. (2009) The tyrosine kinase network regulating mast cell activation. Immunol. Rev. 228, 149-169. https://doi.org/10.1111/j.1600-065X.2008.00742.x
  6. Gilfillan, A. M. and Tkaczyk, C. (2006) Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6, 218-230. https://doi.org/10.1038/nri1782
  7. Guo, W., Sun, J., Jiang, L., Duan, L., Huo, M., Chen, N., Zhong, W., Wassy, L., Yang, Z. and Feng, H. (2012) Imperatorin attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPKs activation in RAW 264.7 macrophages. Inflammation 35, 1764-1772. https://doi.org/10.1007/s10753-012-9495-9
  8. Harizi, H., Corcuff, J. B. and Gualde, N. (2008) Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol. Med. 14, 461-469. https://doi.org/10.1016/j.molmed.2008.08.005
  9. Huang, G. J., Deng, J. S., Liao, J. C., Hou, W. C., Wang, S. Y., Sung, P. J. and Kuo, Y. H. (2012) Inducible nitric oxide synthase and cyclooxygenase- 2 participate in anti-inflammatory activity of imperatorin from Glehnia littoralis. J. Agric. Food Chem. 60, 1673-1681. https://doi.org/10.1021/jf204297e
  10. Jeong, K. T., Kim, S. G., Lee, J., Park, Y. N., Park, H. H., Park, N. Y., Kim, K. J., Lee, H., Lee, Y. J. and Lee, E. (2014) Anti-allergic effect of a Korean traditional medicine, Biyeom-Tang on mast cells and allergic rhinitis. BMC Complement. Altern. Med. 14, 54. https://doi.org/10.1186/1472-6882-14-54
  11. Kalesnikoff, J. and Galli, S. J. (2008) New developments in mast cell biology. Nat. Immunol. 9, 1215-1223. https://doi.org/10.1038/ni.f.216
  12. Kambayashi, T. and Koretzky, G. A. (2007) Proximal signaling events in Fc epsilon RI-mediated mast cell activation. J. Allergy Clin. Immunol. 119, 544-552; quiz 553-544. https://doi.org/10.1016/j.jaci.2007.01.017
  13. Kaminska, B. (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754, 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  14. Kang, S. W., Kim, C. Y., Song, D. G., Pan, C. H., Cha, K. H., Lee, D. U. and Um, B. H. (2010) Rapid identification of furanocoumarins in Angelica dahurica using the online LC-MMR-MS and their nitric oxide inhibitory activity in RAW 264.7 cells. Phytochem. Anal. 21, 322-327. https://doi.org/10.1002/pca.1202
  15. Lin, L. L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A. and Davis, R. J. (1993) $cPLA_2$ is phosphorylated and activated by MAP kinase. Cell 72, 269-278. https://doi.org/10.1016/0092-8674(93)90666-E
  16. Lu, Y., Li, X., Park, Y. N., Kwon, O., Piao, D., Chang, Y. C., Kim, C. H., Lee, E., Son, J. K. and Chang, H. W. (2014) Britanin suppresses IgE/Ag-induced mast cell activation by inhibiting the Syk pathway. Biomol Ther 22, 193-199. https://doi.org/10.4062/biomolther.2014.038
  17. Lu, Y., Li, Y., Seo, C. S., Murakami, M., Son, J. K. and Chang, H. W. (2012) Saucerneol D inhibits eicosanoid generation and degranulation through suppression of Syk kinase in mast cells. Food Chem. Toxicol. 50, 4382-4388. https://doi.org/10.1016/j.fct.2012.08.053
  18. Lu, Y., Yang, J. H., Li, X., Hwangbo, K., Hwang, S. L., Taketomi, Y., Murakami, M., Chang, Y. C., Kim, C. H., Son, J. K. and Chang, H. W. (2011) Emodin, a naturally occurring anthraquinone derivative, suppresses IgE-mediated anaphylactic reaction and mast cell activation. Biochem. Pharmacol. 82, 1700-1708. https://doi.org/10.1016/j.bcp.2011.08.022
  19. Metcalfe, D. D., Peavy, R. D. and Gilfillan, A. M. (2009) Mechanisms of mast cell signaling in anaphylaxis. J. Allergy Clin. Immunol. 124, 639-646; quiz 647-638. https://doi.org/10.1016/j.jaci.2009.08.035
  20. Oh, H. A., Kim, H. M. and Jeong, H. J. (2011) Distinct effects of imperatorin on allergic rhinitis: imperatorin inhibits caspase-1 activity in vivo and in vitro. J. Pharmacol. Exp. Ther. 339, 72-81. https://doi.org/10.1124/jpet.111.184275
  21. Park, H. H., Kim, M. J., Li, Y., Park, Y. N., Lee, J., Lee, Y. J., Kim, S. G., Park, H. J., Son, J. K., Chang, H. W. and Lee, E. (2013) Britanin suppresses LPS-induced nitric oxide, $PGE_2$ and cytokine production via NF-kappaB and MAPK inactivation in RAW 264.7 cells. Int. Immunopharmacol. 15, 296-302. https://doi.org/10.1016/j.intimp.2012.12.005
  22. Roskoski, R., Jr. (2005) Structure and regulation of Kit protein-tyrosine kinase--the stem cell factor receptor. Biochem. Biophys. Res. Commun. 338, 1307-1315. https://doi.org/10.1016/j.bbrc.2005.09.150
  23. Soberman, R. J. and Christmas, P. (2003) The organization and consequences of eicosanoid signaling. J. Clin. Invest. 111, 1107-1113. https://doi.org/10.1172/JCI200318338

Cited by

  1. Imperatorin exerts antiallergic effects in Th2-mediated allergic asthma via induction of IL-10-producing regulatory T cells by modulating the function of dendritic cells vol.110, 2016, https://doi.org/10.1016/j.phrs.2016.04.030
  2. Natural and Synthetic Coumarins with Effects on Inflammation vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21101322
  3. Recent acquisitions on oxyprenylated secondary metabolites as anti-inflammatory agents 2017, https://doi.org/10.1016/j.ejmech.2017.08.038
  4. Imperatorin Suppresses Anaphylactic Reaction and IgE-Mediated Allergic Responses by Inhibiting Multiple Steps of FceRI Signaling in Mast Cells: IMP Alleviates Allergic Responses in PCA vol.2019, pp.2314-6141, 2019, https://doi.org/10.1155/2019/7823761
  5. Anti-inflammatory and Analgesic Effects in Rodent Models of Ethanol Extract of Clausena anisata Roots and their Chemical Constituents vol.12, pp.1, 2017, https://doi.org/10.1177/1934578x1701200119
  6. Nepetin, a natural compound from Inulae flos, suppresses degranulation and eicosanoid generation through PLCγ1 and Akt signaling pathways in mast cells vol.43, pp.2, 2015, https://doi.org/10.1007/s12272-020-01212-7