DOI QR코드

DOI QR Code

Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

  • Kim, Jun Ho (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Mi-Yeon (School of Systems Biological Science, Soongsil University) ;
  • Kim, Jong-Hoon (Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Cho, Jae Youl (Department of Genetic Engineering, Sungkyunkwan University)
  • Received : 2015.03.30
  • Accepted : 2015.04.27
  • Published : 2015.09.01

Abstract

Flavonoids, such as fisetin (3,7,3',4'-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis, kinase assays, and an overexpression strategy. Fisetin diminished the release of nitric oxide (NO) and reduced the mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 in LPS-stimulated RAW264.7 cells without displaying cytotoxicity. This compound also blocked the nuclear translocation of p65/nuclear factor (NF)-${\kappa}B$. In agreement, the upstream phosphorylation events for NF-${\kappa}B$ activation, composed of Src, Syk, and I${\kappa}B{\alpha}$, were also reduced by fisetin. The phospho-Src level, triggered by overexpression of wild-type Src, was also inhibited by fisetin. Therefore, these results strongly suggest that fisetin can be considered a bioactive immunomodulatory compound with anti-inflammatory properties through suppression of Src and Syk activities.

Keywords

References

  1. Byeon, S. E., Lee, Y. G., Kim, B. H., Shen, T., Lee, S. Y., Park, H. J., Park, S. C., Rhee, M. H. and Cho, J. Y. (2008) Surfactin blocks NO production in lipopolysaccharide-activated macrophages by inhibiting NF-kappaB activation. J. Microbiol. Biotechnol. 18, 1984-1989.
  2. Byeon, S. E., Yi, Y. S., Oh, J., Yoo, B. C., Hong, S. and Cho, J. Y. (2012) The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm. 2012, 512926.
  3. Byeon, S. E., Yu, T., Yang, Y., Lee, Y. G., Kim, J. H., Oh, J., Jeong, H. Y., Hong, S., Yoo, B. C., Cho, W. J., Hong, S. and Cho, J. Y. (2013) Hydroquinone regulates hemeoxygenase-1 expression via modulation of Src kinase activity through thiolation of cysteine residues. Free Radic. Biol. Med. 57, 105-118. https://doi.org/10.1016/j.freeradbiomed.2012.12.013
  4. Chiruta, C., Schubert, D., Dargusch, R. and Maher, P. (2012) Chemical modification of the multitarget neuroprotective compound fisetin. J. Med. Chem. 55, 378-389. https://doi.org/10.1021/jm2012563
  5. Courtois, G. and Gilmore, T. D. (2006) Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 25, 6831-6843. https://doi.org/10.1038/sj.onc.1209939
  6. Dung, T. T., Kim, S. C., Yoo, B. C., Sung, G. H., Yang, W. S., Kim, H. G., Park, J. G., Rhee, M. H., Park, K. W., Yoon, K., Lee, Y., Hong, S., Kim, J. H. and Cho, J. Y. (2014) (5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl 6-hydroxynaphthalene-2-carboxylate, a kojic acid derivative, inhibits inflammatory mediator production via the suppression of Syk/Src and NF-kappaB activation. Int. Immunopharmacol. 20, 37-45. https://doi.org/10.1016/j.intimp.2014.02.019
  7. Endale, M., Park, S. C., Kim, S., Kim, S. H., Yang, Y., Cho, J. Y. and Rhee, M. H. (2013) Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-kappaB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 218, 1452-1467. https://doi.org/10.1016/j.imbio.2013.04.019
  8. Jang, H.-S., Kook, S.-H., Son, Y.-O., Kim, J.-G., Jeon, Y.-M., Jang, Y.-S., Choi, K.-C., Kim, J., Han, S.-K. and Lee, K.-Y. (2005) Flavonoids purified from Rhus verniciflua Stokes actively inhibit cell growth and induce apoptosis in human osteosarcoma cells. Biochim. Biophys. Acta 1726, 309-316. https://doi.org/10.1016/j.bbagen.2005.08.010
  9. Jeong, D., Yang, W. S., Yang, Y., Nam, G., Kim, J. H., Yoon, D. H., Noh, H. J., Lee, S., Kim, T. W., Sung, G. H. and Cho, J. Y. (2013) In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract. J. Ethnopharmacol. 146, 205-213. https://doi.org/10.1016/j.jep.2012.12.034
  10. Jeong, D., Yi, Y. S., Sung, G. H., Yang, W. S., Park, J. G., Yoon, K., Yoon, D. H., Song, C., Lee, Y., Rhee, M. H., Kim, T. W., Kim, J. H. and Cho, J. Y. (2014a) Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract. J. Ethnopharmacol. 152, 487-496. https://doi.org/10.1016/j.jep.2014.01.030
  11. Jeong, H. Y., Sung, G.-H., Kim, J. H., Yoon, J. Y., Yang, Y., Park, J. G., Kim, S. H., Yi, Y.-S., Yang, W. S. and Yoon, D. H. (2014b) Syk and Src are major pharmacological targets of a Cerbera manghas methanol extract with kaempferol-based anti-inflammatory activity. J. Ethnopharmacol. 151, 960-969. https://doi.org/10.1016/j.jep.2013.12.009
  12. Jung, C. H., Kim, J. H., Kim, J. H., Chung, J. H., Choi, H. S., Seo, J. B., Shin, Y. C., Kim, S. H. and Ko, S. G. (2011) Anti-inflammatory effect of Rhus verniviflua Stokes by suppression of iNOS-mediated Akt and ERK pathways: in-vitro and in-vivo studies. J. Pharm. Pharmacol. 63, 679-687. https://doi.org/10.1111/j.2042-7158.2011.01251.x
  13. Kang, G. J., Han, S. C., Ock, J. W., Kang, H. K. and Yoo, E. S. (2013) Anti-inflammatory effect of quercetagetin, an active component of immature Citrus unshiu, in HaCaT human keratinocytes. Biomol. Ther. 21, 138-145. https://doi.org/10.4062/biomolther.2013.001
  14. Khan, N., Syed, D. N., Ahmad, N. and Mukhtar, H. (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid. Redox Signal. 19, 151-162. https://doi.org/10.1089/ars.2012.4901
  15. Kim, D. H., Chung, J. H., Yoon, J. S., Ha, Y. M., Bae, S., Lee, E. K., Jung, K. J., Kim, M. S., Kim, Y. J., Kim, M. K. and Chung, H. Y. (2013a) Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-kappaB in LPS-stimulated RAW264.7 cells and mouse liver. J. Ginseng Res. 37, 54-63. https://doi.org/10.5142/jgr.2013.37.54
  16. Kim, J. H., Lee, Y. G., Yoo, S., Oh, J., Jeong, D., Song, W. K., Yoo, B. C., Rhee, M. H., Park, J., Cha, S. H., Hong, S. and Cho, J. Y. (2013b) Involvement of Src and the actin cytoskeleton in the antitumorigenic action of adenosine dialdehyde. Biochem. Pharmacol. 85, 1042-1056. https://doi.org/10.1016/j.bcp.2013.01.012
  17. Kim, J. H., Shin, Y. C. and Ko, S. G. (2014a) Integrating traditional medicine into modern inflammatory diseases care: multitargeting by Rhus verniciflua Stokes. Mediators Inflamm. 2014, 154561.
  18. Kim, K. H., Moon, E., Choi, S. U., Pang, C., Kim, S. Y. and Lee, K. R. (2015) Identification of cytotoxic and anti-inflammatory constituents from the bark of Toxicodendron vernicifluum (Stokes) F.A. Barkley. J. Ethnopharmacol. 162, 231-237. https://doi.org/10.1016/j.jep.2014.12.071
  19. Kim, M. Y., Yoo, B. C. and Cho, J. Y. (2014b) Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line. J. Ginseng Res. 38, 251-255. https://doi.org/10.1016/j.jgr.2014.06.003
  20. Kim, S.-C., Kang, S.-H., Jeong, S.-J., Kim, S.-H., Ko, H. S. and Kim, S.-H. (2012) Inhibition of c-Jun N-terminal kinase and nuclear factor ${\kappa}$B pathways mediates fisetin-exerted anti-inflammatory activity in lipopolysccharide-treated RAW264. 7 cells. Immunopharmacol. Immunotoxicol. 34, 645-650. https://doi.org/10.3109/08923973.2011.648270
  21. Lee, J. A., Lee, M. Y., Shin, I. S., Seo, C. S., Ha, H. and Shin, H. K. (2012) Anti-inflammatory effects of Amomum compactum on RAW 264.7 cells via induction of heme oxygenase-1. Arch. Pharm. Res. 35, 739-746. https://doi.org/10.1007/s12272-012-0419-x
  22. Lee, Y. G., Chain, B. M. and Cho, J. Y. (2009) Distinct role of spleen tyrosine kinase in the early phosphorylation of inhibitor of kappaB alpha via activation of the phosphoinositide-3-kinase and Akt pathways. Int. J. Biochem. Cell Biol. 41, 811-821. https://doi.org/10.1016/j.biocel.2008.08.011
  23. Oh, C. T., Park, J. I., Jung, Y. R., Joo, Y. A., Shin, D. H., Cho, H. J., Ahn, S. M., Lim, Y. H., Park, C. K. and Hwang, J. S. (2013) Inhibitory effect of Korean red ginseng on melanocyte proliferation and its possible implication in GM-CSF mediated signaling. J. Ginseng Res. 37, 389-400. https://doi.org/10.5142/jgr.2013.37.389
  24. Oh, J., Yu, T., Choi, S. J., Yang, Y., Baek, H. S., An, S. A., Kwon, L. K., Kim, J., Rho, H. S., Shin, S. S., Choi, W. S., Hong, S. and Cho, J. Y. (2012) Syk/Src pathway-targeted inhibition of skin inflammatory responses by carnosic acid. Mediators Inflamm. 2012, 781375.
  25. Pal, H. C., Athar, M., Elmets, C. A. and Afaq, F. (2015) Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/$NF{\kappa}B$ signaling pathways in SKH-1 hairless mice. Photochem. Photobiol. 91, 225-234. https://doi.org/10.1111/php.12337
  26. Park, D. K., Lee, Y. G. and Park, H. J. (2013) Extract of Rhus verniciflua bark suppresses 2,4-dinitrofluorobenzene-induced allergic contact dermatitis. Evid. Based Complement Alternat. Med. 2013, 879696.
  27. Pauwels, R., Balzarini, J., Baba, M., Snoeck, R., Schols, D., Herdewijn, P., Desmyter, J. and De Clercq, E. (1988) Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 20, 309-321. https://doi.org/10.1016/0166-0934(88)90134-6
  28. Rice-Evans, C. A., Miller, N. J. and Paganga, G. (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  29. Seo, J. M., Kang, H. M., Son, K. H., Kim, J. H., Lee, C. W., Kim, H. M., Chang, S. I. and Kwon, B. M. (2003) Antitumor activity of flavones isolated from Artemisia argyi. Planta Med. 69, 218-222. https://doi.org/10.1055/s-2003-38486
  30. Shen, T., Lee, J., Park, M. H., Lee, Y. G., Rho, H. S., Kwak, Y. S., Rhee, M. H., Park, Y. C. and Cho, J. Y. (2011) Ginsenoside Rp1, a ginsenoside derivative, blocks promoter activation of iNOS and COX-2 genes by suppression of an IKKbeta-mediated NF-${\kappa}B$ pathway in HEK293 cells. J. Ginseng Res. 35, 200-208. https://doi.org/10.5142/jgr.2011.35.2.200
  31. Sohn, S. H., Kim, S. K., Kim, Y. O., Kim, H. D., Shin, Y. S., Yang, S. O., Kim, S. Y. and Lee, S. W. (2013) A comparison of antioxidant activity of Korean white and red ginsengs on H2O2-induced oxidative stress in HepG2 hepatoma cells. J. Ginseng Res. 37, 442-450. https://doi.org/10.5142/jgr.2013.37.442
  32. Soler Palacios, B., Estrada-Capetillo, L., Izquierdo, E., Criado, G., Nieto, C., Municio, C., Gonzalez-Alvaro, I., Sanchez-Mateos, P., Pablos, J. L. and Corbi, A. L. (2015) Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent proinflammatory profile. J. Pathol. 235, 515-526. https://doi.org/10.1002/path.4466
  33. Song, S. B., Tung, N. H., Quang, T. H., Ngan, N. T., Kim, K. E. and Kim, Y. H. (2012) Inhibition of TNF-alpha-mediated NF-kappaB transcriptional activity in HepG2 cells by dammarane-type saponins from Panax ginseng leaves. J. Ginseng Res. 36, 146-152. https://doi.org/10.5142/jgr.2012.36.2.146
  34. van den Berg, W. B. and Bresnihan, B. (1999) Pathogenesis of joint damage in rheumatoid arthritis: evidence of a dominant role for interleukin-1. Baillieres Best Pract. Res. Clin. Rheumatol. 13, 577-597. https://doi.org/10.1053/berh.1999.0047
  35. Vilahur, G. and Badimon, L. (2014) Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor. Front. Physiol. 5, 496.
  36. Yang, K.-J., Shin, S., Piao, L., Shin, E., Li, Y., Park, K. A., Byun, H. S., Won, M., Hong, J. and Kweon, G. R. (2008) Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding. J. Biol. Chem. 283, 1480-1491. https://doi.org/10.1074/jbc.M706361200
  37. Yang, W. S., Jeong, D., Yi, Y. S., Lee, B. H., Kim, T. W., Htwe, K. M., Kim, Y. D., Yoon, K. D., Hong, S., Lee, W. S. and Cho, J. Y. (2014a) Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1. J. Ethnopharmacol. 151, 1165-1174. https://doi.org/10.1016/j.jep.2013.12.033
  38. Yang, Y., Yang, W. S., Yu, T., Yi, Y. S., Park, J. G., Jeong, D., Kim, J. H., Oh, J. S., Yoon, K., Kim, J. H. and Cho, J. Y. (2014b) Novel antiinflammatory function of NSC95397 by the suppression of multiple kinases. Biochem. Pharmacol. 88, 201-215.
  39. Yayeh, T., Jung, K. H., Jeong, H. Y., Park, J. H., Song, Y. B., Kwak, Y. S., Kang, H. S., Cho, J. Y., Oh, J. W., Kim, S. K. and Rhee, M. H. (2012) Korean red ginseng saponin fraction downregulates proinflammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J. Ginseng Res. 36, 263-269. https://doi.org/10.5142/jgr.2012.36.3.263
  40. Yi, Y. S., Son, Y. J., Ryou, C., Sung, G. H., Kim, J. H. and Cho, J. Y. (2014) Functional roles of Syk in macrophage-mediated inflammatory responses. Mediators Inflamm. 2014, 270302.
  41. Yoon, J. Y., Jeong, H. Y., Kim, S. H., Kim, H. G., Nam, G., Kim, J. P., Yoon, D. H., Hwang, H., Kimc, T. W., Hong, S. and Cho, J. Y. (2013) Methanol extract of Evodia lepta displays Syk/Src-targeted antiinflammatory activity. J. Ethnopharmacol. 148, 999-1007. https://doi.org/10.1016/j.jep.2013.05.030
  42. Youn, C. K., Park, S. J., Lee, M. Y., Cha, M. J., Kim, O. H., You, H. J., Chang, I. Y., Yoon, S. P. and Jeon, Y. J. (2013) Silibinin inhibits LPS-induced macrophage activation by blocking p38 MAPK in RAW 264.7 Cells. Biomol. Ther. 21, 258-263. https://doi.org/10.4062/biomolther.2013.044

Cited by

  1. Thymoquinone: An IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities vol.7, 2017, https://doi.org/10.1038/srep42995
  2. Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway vol.21, pp.4, 2017, https://doi.org/10.4196/kjpp.2017.21.4.449
  3. Cerbera manghas methanol extract exerts anti-inflammatory activity by targeting c-Jun N-terminal kinase in the AP-1 pathway vol.193, 2016, https://doi.org/10.1016/j.jep.2016.08.033
  4. Syk-Mediated Suppression of Inflammatory Responses by Cordyceps bassiana vol.45, pp.06, 2017, https://doi.org/10.1142/S0192415X17500677
  5. AKT-targeted anti-inflammatory activity of the methanol extract of Chrysanthemum indicum var. albescens vol.201, 2017, https://doi.org/10.1016/j.jep.2017.03.001
  6. Src/Syk-Targeted Anti-Inflammatory Actions of Triterpenoidal Saponins from Gac (Momordica cochinchinensis) Seeds vol.45, pp.03, 2017, https://doi.org/10.1142/S0192415X17500288
  7. Src and Syk contribute to the anti-inflammatory activities of Achyranthes aspera ethanolic extract vol.206, 2017, https://doi.org/10.1016/j.jep.2017.05.013
  8. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways vol.789, 2016, https://doi.org/10.1016/j.ejphar.2016.07.001
  9. Anti-Inflammatory Effect of Piper attenuatum Methanol Extract in LPS-Stimulated Inflammatory Responses vol.2017, 2017, https://doi.org/10.1155/2017/4606459
  10. Syk Plays a Critical Role in the Expression and Activation of IRAK1 in LPS-Treated Macrophages vol.2017, 2017, https://doi.org/10.1155/2017/1506248
  11. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38 vol.21, pp.3, 2017, https://doi.org/10.4196/kjpp.2017.21.3.345
  12. In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components vol.40, pp.4, 2016, https://doi.org/10.1016/j.jgr.2016.08.003
  13. Methanol Extract in Its Anti-Inflammatory Action vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/3909038
  14. Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1 vol.46, pp.02, 2018, https://doi.org/10.1142/S0192415X18500222
  15. Antimicrobial activity and active compounds of a Rhus verniciflua Stokes extract vol.0, pp.0, 2018, https://doi.org/10.1515/znc-2018-0054
  16. Fisetin, a plant flavonoid ameliorates doxorubicin-induced cardiotoxicity in experimental rats: the decisive role of caspase-3, COX-II, cTn-I, iNOs and TNF-α pp.1573-4978, 2018, https://doi.org/10.1007/s11033-018-4450-y
  17. Fisetin Alleviates Atrial Inflammation, Remodeling, and Vulnerability to Atrial Fibrillation after Myocardial Infarction vol.60, pp.6, 2015, https://doi.org/10.1536/ihj.19-131
  18. Trichosanthes tricuspidata Lour. Methanol Extract Exhibits Anti-Inflammatory Activity by Targeting Syk, Src, and IRAK1 Kinase Activity vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6879346
  19. Dehydroabietic Acid Suppresses Inflammatory Response Via Suppression of Src-, Syk-, and TAK1-Mediated Pathways vol.20, pp.7, 2015, https://doi.org/10.3390/ijms20071593
  20. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential vol.9, pp.5, 2015, https://doi.org/10.3390/biom9050174
  21. Fisetin Prevents Oxidized Low-density Lipoprotein-Induced Macrophage Foam Cell Formation vol.78, pp.5, 2021, https://doi.org/10.1097/fjc.0000000000001096
  22. Fisetin Protects HaCaT Human Keratinocytes from Fine Particulate Matter (PM2.5)-Induced Oxidative Stress and Apoptosis by Inhibiting the Endoplasmic Reticulum Stress Response vol.10, pp.9, 2015, https://doi.org/10.3390/antiox10091492
  23. Fisetin promotes osteoblast differentiation and osteogenesis through GSK-3β phosphorylation at Ser9 and consequent β-catenin activation, inhibiting osteoporosis vol.192, pp.None, 2015, https://doi.org/10.1016/j.bcp.2021.114676