DOI QR코드

DOI QR Code

A Review of Numerical Simulation Methods for Molding Processes of Plastic Microstructures

플라스틱 미세구조 성형 해석기술 리뷰

  • Park, Jang Min (School of Mechanical Engineering, Yeungnam University) ;
  • Cha, Kyoung Je (Ultimate Manufacturing Technology Group, Korea Institute of Industrial Technology)
  • 박장민 (영남대학교 기계공학부) ;
  • 차경제 (한국생산기술연구원 극한제조기술그룹)
  • Received : 2015.07.29
  • Accepted : 2015.08.06
  • Published : 2015.08.31

Abstract

Molding technologies for plastic microstructures have been extensively investigated during the last two decades, and theoretical and numerical studies on the micro molding process have provided efficient tools for the development of such molding technologies. In this paper, we present a review of numerical simulation methods for the micro molding process. Basic models for a description of the material property, governing equations of the flow and heat transfer during the molding process, and numerical methods will be described. Particularly, numerical simulations for micro injection molding and hot embossing processes will be presented, and their main features noted and compared to those for conventional molding processes.

Keywords

References

  1. Hansen, H. N., Hocken, R. J. and Tosello, G., "Replication of micro and nano surface geometries," CIRP Annals - Manufacturing Technology, Vol. 60, No.2, pp. 695-714, 2011. https://doi.org/10.1016/j.cirp.2011.05.008
  2. Giboz, J, Copponnex, T. and Mele, P., "Microinjection molding of thermoplastic polymers: a review," J. Micromech. Microeng., Vol. 17, No.6, pp. R96-R109, 2007. https://doi.org/10.1088/0960-1317/17/6/R02
  3. Hieber, C. A. and Shen, S. F., "A finite-element/finite-difference simulation of the injection-molding filling process," J. Non-Newtonian Fluid Mech., Vol. 7, No.1, pp. 1-32, 1980. https://doi.org/10.1016/0377-0257(80)85012-9
  4. Lee, Y. B., Kwon, T. H. and Yoon, K. H, "Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: basic modeling and results for injection molding," Polym. Eng. Sci., Vol. 42, No.11, pp. 2246-2272, 2002. https://doi.org/10.1002/pen.11114
  5. Christensen, R. M., Theory of viscoelasticity: An introduction, Academic Press, pp.36, 1982.
  6. Yu, L., Koh, C. G., Lee, L. J. and Koelling K. W., "Experimental investigation and numerical simulation of injection molding with micro-features," Polym. Eng. and Sci., Vol. 42, pp. 871-888, 2002. https://doi.org/10.1002/pen.10998
  7. Su, Y. C., Shah, J., and Lin, L., "Implementation and analysis of polymeric microstructure replication by micro injection molding," J. Micromech. Microeng., Vol. 14, No.3, pp. 415-422, 2004. https://doi.org/10.1088/0960-1317/14/3/015
  8. Lin, H.-Y. and Young, W.-B., "Analysis of the filling capability to the microstructures in micro-injection molding," App. Math. Model., Vol. 33, No.9, pp. 3746-3755, 2009. https://doi.org/10.1016/j.apm.2008.12.012
  9. Yang, C., Li, L., Huang, H., Castro, J. M., Yi, A. Y., "Replication characterization of microribs fabricated by combining ultraprecision machining and microinjection molding," Polym. Eng. Sci., Vol. 50, No.10, pp. 2021-2030, 2010. https://doi.org/10.1002/pen.21730
  10. Yu, L., Lee, L. J. and Koelling K. W., "Flow and heat transfer simulation of injection molding with microstructures," Polym. Eng. Sci., Vol. 44, pp. 1866-1876, 2004. https://doi.org/10.1002/pen.20188
  11. Lee, J. G., Lee, B.-K., Kang, T. G. and Kwon, T. H., "Experimental and numerical investigation of injection molding with microrib patterns," Polym. Eng. Sci., Vol. 50, No.6, pp. 1186-1198, 2010. https://doi.org/10.1002/pen.21642
  12. Choi, S.-J. and Kim, S. K., "Multi-scale filling simulation of micro-injection molding process," J. Mech. Sci. Technol., Vol 25, No.1, pp. 117-124, 2011. https://doi.org/10.1007/s12206-010-1025-9
  13. Juang, Y.-J., Lee, L. J., and Koelling, K. W., "Hot embossing in microfabrication. Part II: rheological characterization and process analysis," Polym. Eng. Sci., Vol. 42, No.3, pp. 551-566, 2002. https://doi.org/10.1002/pen.10971
  14. Worgull, M., Heckele, M., "New aspects of simulation in hot embossing," Microsys. Technol., Vol. 10, No.5, pp. 432-437, 2004. https://doi.org/10.1007/s00542-004-0418-z
  15. Song, Z, Choi, J., You, B. H., Lee, J. and Park, S., "Simulation study on stress and deformation of polymeric patterns using the demolding process in thermal imprint lithography," J. Vac. Sci. Technol. B., Vol. 26, pp. 598-605, 2008. https://doi.org/10.1116/1.2890693
  16. Liu, C., Li, J. M., Liu, J. S. and Wang, L. D., "Deformation behavior of solid polymer during hot embossing process," Microelec. Eng., Vol. 87, No. 2, pp. 200-207, 2010. https://doi.org/10.1016/j.mee.2009.07.014
  17. Eriksson, T. and Rasmussen, H., K., "The effects of polymer melt rheology on the replication of surface microstructures in isothermal moulding," J. Non-Newtonian Fluid Mech., Vol. 127, No.2-3, pp. 191-200, 2005. https://doi.org/10.1016/j.jnnfm.2005.03.007
  18. Worgull, M., Kabanemi, K. K., Marcotte, J.-P., Hetu, J.-F., Heckele, M., "Modeling of large area hot embossing," Microsys. Technol., Vol. 14, pp. 1061-1066, 2008. https://doi.org/10.1007/s00542-007-0493-z
  19. Worgull, M., Kabanemi, K. K., Hetu, J.-F., Heckele, M., "Hot embossing of microstructures: characterization of friction during demolding," Microsys. Technol., Vol. 14, No.6, pp. 767-773, 2008. https://doi.org/10.1007/s00542-007-0492-0
  20. Taylor, H, Lam, Y. C. and Boning, D., "A computationally simple method for simulating the micro-embossing of thermoplastic layers,", J. Micromech. Microeng., Vol. 19, No.7, 075007, 2009. https://doi.org/10.1088/0960-1317/19/7/075007
  21. Kang, T. G. and Kwon, T. H., "Numerical investigation of hot embossing filling characteristics," Int. Polym. Process., Vol. 22, No.3, pp. 266-275, 2007. https://doi.org/10.3139/217.0029
  22. Park, J. M., Kang, T. G., Park, S. J., "Numerical simulation of hot embossing filling stage using a viscoelastic constitutive model," Korea-Aust. Rheo. J., Vol. 23, No.3, pp. 139-146, 2011. https://doi.org/10.1007/s13367-011-0017-3
  23. Kim, S. M., Kang, J. H., Lee, W. I., "Analysis of polymer flow in embossing stage during thermal nanoimprint lithography," Polym. Eng. Sci., Vol. 51, No.2, pp. 209-217, 2011. https://doi.org/10.1002/pen.21772