Browse > Article
http://dx.doi.org/10.14775/ksmpe.2015.14.4.014

A Review of Numerical Simulation Methods for Molding Processes of Plastic Microstructures  

Park, Jang Min (School of Mechanical Engineering, Yeungnam University)
Cha, Kyoung Je (Ultimate Manufacturing Technology Group, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society of Manufacturing Process Engineers / v.14, no.4, 2015 , pp. 14-20 More about this Journal
Abstract
Molding technologies for plastic microstructures have been extensively investigated during the last two decades, and theoretical and numerical studies on the micro molding process have provided efficient tools for the development of such molding technologies. In this paper, we present a review of numerical simulation methods for the micro molding process. Basic models for a description of the material property, governing equations of the flow and heat transfer during the molding process, and numerical methods will be described. Particularly, numerical simulations for micro injection molding and hot embossing processes will be presented, and their main features noted and compared to those for conventional molding processes.
Keywords
Micro Injection Molding; Hot Embossing; Microstructure; Numerical Simulation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hansen, H. N., Hocken, R. J. and Tosello, G., "Replication of micro and nano surface geometries," CIRP Annals - Manufacturing Technology, Vol. 60, No.2, pp. 695-714, 2011.   DOI
2 Giboz, J, Copponnex, T. and Mele, P., "Microinjection molding of thermoplastic polymers: a review," J. Micromech. Microeng., Vol. 17, No.6, pp. R96-R109, 2007.   DOI
3 Hieber, C. A. and Shen, S. F., "A finite-element/finite-difference simulation of the injection-molding filling process," J. Non-Newtonian Fluid Mech., Vol. 7, No.1, pp. 1-32, 1980.   DOI
4 Lee, Y. B., Kwon, T. H. and Yoon, K. H, "Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: basic modeling and results for injection molding," Polym. Eng. Sci., Vol. 42, No.11, pp. 2246-2272, 2002.   DOI
5 Christensen, R. M., Theory of viscoelasticity: An introduction, Academic Press, pp.36, 1982.
6 Yu, L., Koh, C. G., Lee, L. J. and Koelling K. W., "Experimental investigation and numerical simulation of injection molding with micro-features," Polym. Eng. and Sci., Vol. 42, pp. 871-888, 2002.   DOI
7 Su, Y. C., Shah, J., and Lin, L., "Implementation and analysis of polymeric microstructure replication by micro injection molding," J. Micromech. Microeng., Vol. 14, No.3, pp. 415-422, 2004.   DOI   ScienceOn
8 Lin, H.-Y. and Young, W.-B., "Analysis of the filling capability to the microstructures in micro-injection molding," App. Math. Model., Vol. 33, No.9, pp. 3746-3755, 2009.   DOI
9 Yang, C., Li, L., Huang, H., Castro, J. M., Yi, A. Y., "Replication characterization of microribs fabricated by combining ultraprecision machining and microinjection molding," Polym. Eng. Sci., Vol. 50, No.10, pp. 2021-2030, 2010.   DOI
10 Yu, L., Lee, L. J. and Koelling K. W., "Flow and heat transfer simulation of injection molding with microstructures," Polym. Eng. Sci., Vol. 44, pp. 1866-1876, 2004.   DOI   ScienceOn
11 Lee, J. G., Lee, B.-K., Kang, T. G. and Kwon, T. H., "Experimental and numerical investigation of injection molding with microrib patterns," Polym. Eng. Sci., Vol. 50, No.6, pp. 1186-1198, 2010.   DOI
12 Choi, S.-J. and Kim, S. K., "Multi-scale filling simulation of micro-injection molding process," J. Mech. Sci. Technol., Vol 25, No.1, pp. 117-124, 2011.   DOI
13 Juang, Y.-J., Lee, L. J., and Koelling, K. W., "Hot embossing in microfabrication. Part II: rheological characterization and process analysis," Polym. Eng. Sci., Vol. 42, No.3, pp. 551-566, 2002.   DOI
14 Eriksson, T. and Rasmussen, H., K., "The effects of polymer melt rheology on the replication of surface microstructures in isothermal moulding," J. Non-Newtonian Fluid Mech., Vol. 127, No.2-3, pp. 191-200, 2005.   DOI
15 Worgull, M., Heckele, M., "New aspects of simulation in hot embossing," Microsys. Technol., Vol. 10, No.5, pp. 432-437, 2004.   DOI
16 Song, Z, Choi, J., You, B. H., Lee, J. and Park, S., "Simulation study on stress and deformation of polymeric patterns using the demolding process in thermal imprint lithography," J. Vac. Sci. Technol. B., Vol. 26, pp. 598-605, 2008.   DOI
17 Liu, C., Li, J. M., Liu, J. S. and Wang, L. D., "Deformation behavior of solid polymer during hot embossing process," Microelec. Eng., Vol. 87, No. 2, pp. 200-207, 2010.   DOI
18 Worgull, M., Kabanemi, K. K., Marcotte, J.-P., Hetu, J.-F., Heckele, M., "Modeling of large area hot embossing," Microsys. Technol., Vol. 14, pp. 1061-1066, 2008.   DOI
19 Worgull, M., Kabanemi, K. K., Hetu, J.-F., Heckele, M., "Hot embossing of microstructures: characterization of friction during demolding," Microsys. Technol., Vol. 14, No.6, pp. 767-773, 2008.   DOI
20 Taylor, H, Lam, Y. C. and Boning, D., "A computationally simple method for simulating the micro-embossing of thermoplastic layers,", J. Micromech. Microeng., Vol. 19, No.7, 075007, 2009.   DOI
21 Kang, T. G. and Kwon, T. H., "Numerical investigation of hot embossing filling characteristics," Int. Polym. Process., Vol. 22, No.3, pp. 266-275, 2007.   DOI
22 Park, J. M., Kang, T. G., Park, S. J., "Numerical simulation of hot embossing filling stage using a viscoelastic constitutive model," Korea-Aust. Rheo. J., Vol. 23, No.3, pp. 139-146, 2011.   DOI
23 Kim, S. M., Kang, J. H., Lee, W. I., "Analysis of polymer flow in embossing stage during thermal nanoimprint lithography," Polym. Eng. Sci., Vol. 51, No.2, pp. 209-217, 2011.   DOI