DOI QR코드

DOI QR Code

Conditions for Ideal Draw Solutes and Current Research Trends in the Draw Solutes for Forward Osmosis Process

정삼투 공정 적용에 적합한 유도 용질의 조건과 최근 동향

  • Jun, Byung-Moon (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Han, Sang-Woo (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Yu-Kyung (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Nguyen, Thi Phuong Nga (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Park, Hyung-Gyu (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kwon, Young-Nam (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 전병문 (울산과학기술대학교 도시환경공학부) ;
  • 한상우 (울산과학기술대학교 도시환경공학부) ;
  • 김유경 (울산과학기술대학교 도시환경공학부) ;
  • 누엔티팡냐 (울산과학기술대학교 도시환경공학부) ;
  • 박형규 (울산과학기술대학교 도시환경공학부) ;
  • 권영남 (울산과학기술대학교 도시환경공학부)
  • Received : 2015.03.17
  • Accepted : 2015.04.12
  • Published : 2015.04.30

Abstract

Water is an essential resource for humans, but fresh water becomes scarce due to population growth and contamination of limited resources. Membrane technology has been widely used for water treatment, and forward osmosis is a process which does not need high hydraulic pressure for the operation. However, there are needs for (1) development of novel draw solutes causing low internal concentration polarization and reverse salt flux for high water flux, and (2) development of economic recovery method of the draw solutes in the diluted draw solution. Previous researches on the draw solute include $NaHCO_3$ which can be regenerated by about $60^{\circ}C$ heating, sucrose which can make potable water without additional process, and magnetic nanoparticles which can be regenerated by external magnetic field. Using the principles of forward osmosis process, sea water desalination, wastewater treatment, refinement of proteins, energy generation using pressure retarded osmosis process, preparation of diluted fertilizer, and growing algae for biofuel can be conducted. This paper summarizes characteristics of ideal draw solutes, recovery method of the draw solutes, and various application examples.

인구의 급속한 증가, 한정된 식수 자원의 오염 등으로 인하여 인류에게 필수적인 물이 점점 부족해지고 있다. 깨끗한 물을 얻기 위해 분리막 공정을 이용한 수처리 방식이 널리 사용되고 있으며, 분리막 공정 중 하나인 정삼투 공정은 고압펌프 없이 구동이 가능하다. 정삼투 공정이 높은 수투과도를 가지기 위해서는 내부 농도 분극 현상 및 Reverse salt flux를 적게 일으키는 유도 용질 개발이 필요하며, 희석된 유도 용액에 포함된 유도 용질의 경제적인 회수 방법 개발 또한 필요하다. 현재까지는 $60^{\circ}C$ 가량에서 회수가 가능한 $NaHCO_3$와 같은 무기 유도 용질, 음료수 생산이 가능한 sucrose와 같은 유기 유도 용질, 자기장을 이용해 회수가 가능한 magnetic nanoparticle과 같은 유도 용질들이 개발되어 보고되었다. 또한, 이러한 정삼투 원리를 이용하여 해수 담수, 폐수처리, 단백질 정제, 압력 지연 삼투 이용한 에너지 생산, 관개를 위한 농축된 비료 희석, 바이오 연료를 위해 폐수로부터 조류를 키우는 공정과 같은 분야에 적용될 수 있다. 본 논문에서는 정삼투 공정에 영향을 주는 유도용액의 특성과 이상적인 조건, 여러 가지 유도 용질 및 유도용질의 회수 방법, 정삼투 공정의 적용 분야를 여러 논문 내용들을 바탕으로 정리하였다.

Keywords

References

  1. C. F. Corvalan, T. Kjellstrom, and K. R. Smith, "Health, environment and sustainable development: identifying links and indicators to promote action", Epidemiology, 10, 656 (1999). https://doi.org/10.1097/00001648-199909000-00036
  2. H. Ahn, J. Kim, and Y. N. Kwon, "Preparation of cellulose acetate membrane and its evaluation as a forward osmosis membrane", Membr. J., 24, 136 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.136
  3. M. Pirbazari, B. N. Badriyha, and V. Ravindran, "MF PAC for treating waters contaminated with natural and synthetic organics", J. Am. Water Works Assoc., 84, 95 (1992). https://doi.org/10.1002/j.1551-8833.1992.tb05906.x
  4. N. Kim and B. Jung, "Preparation of forward osmosis membranes with low internal concentration polarization", Membr. J., 24, 453 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.453
  5. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "Desalination by ammonia-carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance", J. Membr. Sci., 278, 114 (2006). https://doi.org/10.1016/j.memsci.2005.10.048
  6. R. W. Holloway, A. E. Childress, K. E. Dennett, and T. Y. Cath, "Forward osmosis for concentration of anaerobic digester centrate", Water Res., 41, 4005 (2007). https://doi.org/10.1016/j.watres.2007.05.054
  7. J. H. van't Hoff, "Die rolle des osmotischen druckes in der analogie zwischen losungen und gasen", Z. Phys. Chem., 1, 481 (1887).
  8. A. Yokozeki, "Osmotic pressures studied using a simple equation-of-state and its applications", Appl. Energy, 83, 15 (2006). https://doi.org/10.1016/j.apenergy.2004.10.015
  9. D. Stigter and T. L. Hill, "Theory of the donnan membrane equilibrium. II. calculation of the osmotic pressure and of the salt distribution in a donnan system with highly charged colloid particles", J. Phys. Chem., 63, 551 (1959). https://doi.org/10.1021/j150574a025
  10. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination, 174, 1 (2005). https://doi.org/10.1016/j.desal.2004.11.002
  11. Q. Ge, M. Ling, and T.-S. Chung, "Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future", J. Membr. Sci., 442, 225 (2013). https://doi.org/10.1016/j.memsci.2013.03.046
  12. L. Chekli, S. Phuntsho, H. K. Shon, S. Vigneswaran, J. Kandasamy, and A. Chanan, "A review of draw solutes in forward osmosis process and their use in modern applications", Desalin. Water Treat., 43, 167 (2012). https://doi.org/10.1080/19443994.2012.672168
  13. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  14. S. Phuntsho, H. K. Shon, S. Hong, S. Lee, and S. Vigneswaran, "A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions", J. Membr. Sci., 375, 172 (2011). https://doi.org/10.1016/j.memsci.2011.03.038
  15. Q. Ge, J. Su, G. L. Amy, and T.-S. Chung, "Exploration of polyelectrolytes as draw solutes in forward osmosis processes", Water Res., 46, 1318 (2012). https://doi.org/10.1016/j.watres.2011.12.043
  16. Y.-J. Choi, J.-S. Choi, H.-J. Oh, S. Lee, D. R. Yang, and J. H. Kim, "Toward a combined system of forward osmosis and reverse osmosis for seawater desalination", Desalination, 247, 239 (2009). https://doi.org/10.1016/j.desal.2008.12.028
  17. Y. Xu, X. Peng, C. Y. Tang, Q. S. Fu, and S. Nie, "Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module", J. Membr. Sci., 348, 298 (2010). https://doi.org/10.1016/j.memsci.2009.11.013
  18. C. H. Tan and H. Y. Ng, "A novel hybrid forward osmosis-nanofiltration (FO-NF) process for seawater desalination: Draw solution selection and system configuration", Desalin. Water Treat., 13, 356 (2010). https://doi.org/10.5004/dwt.2010.1733
  19. M. Shibuya, M. Yasukawa, T. Takahashi, T. Miyoshi, M. Higa, and H. Matsuyama, "Effect of operating conditions on osmotic-driven membrane performances of cellulose triacetate forward osmosis hollow fiber membrane", Desalination, 362, 34 (2015). https://doi.org/10.1016/j.desal.2015.01.031
  20. E. M. Garcia-Castello, J. R. McCutcheon, and M. Elimelech, "Performance evaluation of sucrose concentration using forward osmosis", J. Membr. Sci., 338, 61 (2009). https://doi.org/10.1016/j.memsci.2009.04.011
  21. K. B. Petrotos, P. Quantick, and H. Petropakis, "A study of the direct osmotic concentration of tomato juice in tubular membrane-module configuration. I. the effect of certain basic process parameters on the process performance", J. Membr. Sci., 150, 99 (1998). https://doi.org/10.1016/S0376-7388(98)00216-6
  22. D. J. Vernon L. Snoeyink, "Water chemistry", pp. 251, Wiley, USA (1980).
  23. C. R. Martinetti, A. E. Childress, and T. Y. Cath, "High recovery of concentrated RO brines using forward osmosis and membrane distillation", J. Membr. Sci., 331, 31 (2009). https://doi.org/10.1016/j.memsci.2009.01.003
  24. S. Adham, "Dewatering reverse osmosis concentrate from water reuse applications using forward osmosis", pp. 25, WateReuse Foundation, Alexandria, VA (2007).
  25. S. K. Yen, F. Mehnas Haja N, M. Su, K. Y. Wang, and T.-S. Chung, "Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis", J. Membr. Sci., 364, 242 (2010). https://doi.org/10.1016/j.memsci.2010.08.021
  26. M. M. Ling and T.-S. Chung, "Novel dual-stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes", J. Membr. Sci., 372, 201 (2011). https://doi.org/10.1016/j.memsci.2011.02.003
  27. M. M. Ling, K. Y. Wang, and T.-S. Chung, "Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse", Ind. Eng. Chem. Res., 49, 5869 (2010). https://doi.org/10.1021/ie100438x
  28. M. M. Ling and T.-S. Chung, "Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration", Desalination, 278, 194 (2011). https://doi.org/10.1016/j.desal.2011.05.019
  29. N. T. Hau, S.-S. Chen, N. C. Nguyen, K. Z. Huang, H. H. Ngo, and W. Guo, "Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge", J. Membr. Sci., 455, 305 (2014). https://doi.org/10.1016/j.memsci.2013.12.068
  30. T.-S. Chung, X. Li, R. C. Ong, Q. Ge, H. Wang, and G. Han, "Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications", Curr. Opin. Chem. Eng., 1, 246 (2012). https://doi.org/10.1016/j.coche.2012.07.004
  31. J. R. McCutcheon and M. Elimelech, "Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis", J. Membr. Sci., 284, 237 (2006). https://doi.org/10.1016/j.memsci.2006.07.049
  32. J. Su and T.-S. Chung, "Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO processes", J. Membr. Sci., 376, 214 (2011). https://doi.org/10.1016/j.memsci.2011.04.031
  33. S. Kim, "Scale-up of osmotic membrane bioreactors by modeling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions", Bioresour. Technol., 165, 88 (2014). https://doi.org/10.1016/j.biortech.2014.03.101
  34. A. Achilli, T. Y. Cath, E. A. Marchand, and A. E. Childress, "The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes", Desalination, 239, 10 (2009). https://doi.org/10.1016/j.desal.2008.02.022
  35. K. Y. Wang, M. M. Teoh, A. Nugroho, and T.-S. Chung, "Integrated forward osmosis-membrane distillation (FO-MD) hybrid system for the concentration of protein solutions", Chem. Eng. Sci., 66, 2421 (2011). https://doi.org/10.1016/j.ces.2011.03.001
  36. A. Achilli, T. Y. Cath, and A. E. Childress, "Selection of inorganic-based draw solutions for forward osmosis applications", J. Membr. Sci., 364, 233 (2010). https://doi.org/10.1016/j.memsci.2010.08.010
  37. O. A. Bamaga, A. Yokochi, and E. G. Beaudry, "Application of forward osmosis in pretreatment of seawater for small reverse osmosis desalination units", Desalin. Water Treat., 5, 183 (2009). https://doi.org/10.5004/dwt.2009.574
  38. N. T. Hancock and T. Y. Cath, "Solute coupled diffusion in osmotically driven membrane processes", Environ. Sci. Technol., 43, 6769 (2009). https://doi.org/10.1021/es901132x
  39. W. A. Phillip, J. S. Yong, and M. Elimelech, "Reverse draw solute permeation in forward osmosis: modeling and experiments", Environ. Sci. Technol., 44, 5170 (2010). https://doi.org/10.1021/es100901n
  40. S. Zou, Y. Gu, D. Xiao, and C. Y. Tang, "The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation", J. Membr. Sci., 366, 356 (2011). https://doi.org/10.1016/j.memsci.2010.10.030
  41. R. L. McGinnis, "Osmotic desalination process" US Patent, 8,002,989, Augest 23 (2011).
  42. Z. Liu, H. Bai, J. Lee, and D. D. Sun, "A low-energy forward osmosis process to produce drinking water", Energy Environ. Sci., 4, 2582 (2011). https://doi.org/10.1039/c1ee01186c
  43. Q. Ge, P. Wang, C. Wan, and T.-S. Chung, "Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment", Environ. Sci. Technol., 46, 6236 (2012). https://doi.org/10.1021/es300784h
  44. J. Su, T.-S. Chung, B. J. Helmer, and J. S. de Wit, "Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute", J. Membr. Sci., 396, 92 (2012). https://doi.org/10.1016/j.memsci.2012.01.001
  45. Q. Yang, K. Y. Wang, and T.-S. Chung, "A novel dual-layer forward osmosis membrane for protein enrichment and concentration", Sep. Purif. Technol., 69, 269 (2009). https://doi.org/10.1016/j.seppur.2009.08.002
  46. K. L. Lee, R. W. Baker, and H. K. Lonsdale, "Membranes for power generation by pressure-retarded osmosis", J. Membr. Sci., 8, 141 (1981). https://doi.org/10.1016/S0376-7388(00)82088-8
  47. S. Loeb, "One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis", Desalination, 141, 85 (2001). https://doi.org/10.1016/S0011-9164(01)00392-7
  48. K. Gerstandt, K. V. Peinemann, S. E. Skilhagen, T. Thorsen, and T. Holt, "Membrane processes in energy supply for an osmotic power plant", Desalination, 224, 64 (2008). https://doi.org/10.1016/j.desal.2007.02.080
  49. N. Jeong, S. G. Kim, and H. W. Lee, "Evaluating the performance of draw solutions in forward osmosis desalination using fertilizer as draw solution", Membr. J., 24, 400 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.400
  50. N. Jeong, S. G. Kim, D. K. Kim, and H. W. Lee, "The effect of draw solution concentration on forward osmosis desalination performance using blended fertilizer as draw solution", Membr. J., 23, 343 (2013).
  51. J. S. Gardner, J. O. Walker, and J. D. Lamb, "Permeability and durability effects of cellulose polymer variation in polymer inclusion membranes", J. Membr. Sci., 229, 87 (2004). https://doi.org/10.1016/j.memsci.2003.09.017
  52. L. A. Hoover, W. A. Phillip, A. Tiraferri, N. Y. Yip, and M. Elimelech, "Forward with osmosis: emerging applications for greater sustainability", Environ. Sci. Technol., 45, 9824 (2011). https://doi.org/10.1021/es202576h
  53. R. E. Kravath and J. A. Davis, "Desalination of sea water by direct osmosis", Desalination, 16, 151 (1975). https://doi.org/10.1016/S0011-9164(00)82089-5
  54. J. O. Kessler and C. D. Moody, "Drinking water from sea water by forward osmosis", Desalination, 18, 297 (1976). https://doi.org/10.1016/S0011-9164(00)84119-3
  55. R. L. McGinnis and M. Elimelech, "Energy requirements of ammonia-carbon dioxide forward osmosis desalination", Desalination, 207, 370 (2007). https://doi.org/10.1016/j.desal.2006.08.012