DOI QR코드

DOI QR Code

Studies on the Preparation and Characterization of PVA Based Cation-exchange Membranes for DMFC Application

직접 메탄올 연료전지 적용을 위한 PVA 기반 양이온교환막 제조 및 특성연구

  • Jeon, Yi Seul (Department of Chemical Engineering, Hannam University) ;
  • Kim, Ka young (Department of Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Chemical Engineering, Hannam University)
  • 전이슬 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 김가영 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화학공학과)
  • Received : 2015.03.05
  • Accepted : 2015.04.14
  • Published : 2015.04.30

Abstract

The water-soluble poly(vinyl alcohol) membranes with the addition of sulfosuccinic acid (SSA) were prepared and to assign the ion exchange capacity, poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA) was added to PVA according to PSSA_MA contents of 70, 80 and 90 wt%. To characterize the resulting membranes, FT-IR, water contents, ion exchange capacity, proton conductivity and methanol permeability were measured. As PSSA_MA contents increased, water contents, ion exchange capacity, proton conductivity increased, but methanol permeability decreased. From these results, the best preparation component was known as PVA10/SSA9/PSSA_MA80.

수용성 고분자인 poly(vinyl alcohol) (PVA)에 가교제인 sulfosuccinic acid (SSA)를 첨가하여 가교반응을 통해 물에 용해되지 않는 막을 제조하였으며, 이온교환능력을 부여하기 위해 poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA)를 PVA 질량대비 70, 80, 90 wt%로 달리 첨가하여 막을 제조하였다. 제조한 막의 특성을 알아보기 위해 FT-IR, 함수율, 이온교환용량, 이온전도도, 메탄올 투과도를 측정하였다. 함수율과 이온교환용량, 이온전도도는 PSSA_MA 함량이 증가할수록 증가하는 경향을 나타내었으며 메탄올 투과도는 감소하는 경향을 나타내었다. 특성평가 결과 본 실험 막의 최적 조성은 PVA10/SSA9/PSSA_MA80으로 도출되었다.

Keywords

References

  1. D. J. Kim, S. Y. Nam, "Research trand of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  2. A. Kapoor and T. Viraraghavan, "Application of immobilized aspergillus niger, biomass in the removal of heavy metals from an industrial waste water", J. Environ. Eng., 33, 371 (1997).
  3. C. T. Matos, S. Velizarov, J. G. Crespo, and M. A. M. Reis, "Removal of mono-valen toxy anions from waterinanion exchange membrane bio reactor: Influence of membrane perm selectivity", Water Res., 40, 231 (2006). https://doi.org/10.1016/j.watres.2005.10.022
  4. J. W. Rhim and H. B. Park, "Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes", J. Membr, Sci., 238, 143 (2004). https://doi.org/10.1016/j.memsci.2004.03.030
  5. H. J. Kim, "Preparation of high functional energy saving materials using polymer nano-composites", Thesis, University of chonnam (2009).
  6. S. W. Yoon and D. H. Kim, "Preparation and characterization of PVA/PAM electrolyte membranes containing silica compound for direct methanol fuel cell application", polymer(Korea), 34, 45 (2010).
  7. J. H. Sauk and G. Shul, "Effect of crossover on the performance of direct methanol fuel cell(DMFC)", Chem. Eng. J., 37, 21 (1999).
  8. S. W. Cheon, J. H. Jun, and J. W. Rhim, "Studies on the preparation of the poly(vinyl alcohol) ion exchange membranes for direct methanol fuel cell", Membr. J., 13, 191 (2003).
  9. C. W. Hwang, "Synthesis of an aminated poly(acrylamide-co-styrene-co-hydroxyethylate) ion selective membrane for membrane capacitive deionization and redox flow battery",Thesis, University of chungnam (2014).
  10. D. S. Kim and Michael D. Guiver, "Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid)", J. Membr, Sci., 281, 156 (2006). https://doi.org/10.1016/j.memsci.2006.03.025
  11. W. J. Lee, H. R. Jung, and M. S. Lee, "Preparation and ionic conductivity of sulfonated-SEBS/$SiO_2$/plasticizer composite polymer electrolyte for polymer battery", Solid State Ionics, 164 (2003).
  12. S. Y. Kim, H. S. Shin, Y. M. Lee, and C. N. Jeong, "Properties of electro-responsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus", J. Appl. Polym. Sci., 73, 1675 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1675::AID-APP8>3.0.CO;2-9
  13. S. Bryan and B. S. Pivovar, "Pervaporaion membranes in direct methanol fuel cells", J. Membr. Sci., 154, 155 (1999). https://doi.org/10.1016/S0376-7388(98)00264-6
  14. G. Tongzhai and S. J. Oh, "PVA/SSA/HPA composite membrane on the application to polymer electrolyte membrane fuel cell", Membr. J., 16, 9 (2006).
  15. I. H. Kim, S. P. Kim, and S. I. Cheong, "Prepartion and characterization of the impregnation to porous membranes with PVA/PSSA-MA/THS-PSA for fuel cell applications", Membr. J., 21, 299 (2011).
  16. S. Y. Lee, Y. M. Lee, and J. W. Rhim, "Poly(vinyl alcohol) membrane containing sulfonic acid groups for direct methanol fuel cell application", Membr. J., 14, 240 (2004).
  17. D. H. Kim, B. S. Lee, and J. W. Rhim, "Preparation and characterization of PVA/PSSA-MA electrolyte membranes containing silica compounds and sulface fluorination for fuel cell applications", J. Appl. Polym. Sci., 34, 540 (2010).
  18. H. Y. Kim, M. S. Kang, and J. O. Won, "Proton exchange membrane using PVA(Poly(vinyl alcohol)/PSSA-MA(poly(styrene sulfonic acid-co-maleic acid)) and silica nano-particles", J. Korean Membr. Soc., 156 (2004).
  19. T. Nithana and P. Akkaramongkolporn, "Neomycinloaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials", Int. J. Pharm, 448, 71 (2013). https://doi.org/10.1016/j.ijpharm.2013.03.011
  20. C. W. Lin and Y. F. Huang, "Semi-interpenetrating network based on cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride) as proton exchange fuel cell membranes", J. Power Sources., 164, 449 (2006).