DOI QR코드

DOI QR Code

Separation of Hydrogen-Nitrogen Gases by PTMSP/PDMS-Borosilicate Composite Membranes

PTMSP/PDMS-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구

  • Lee, Suk Ho (Department of Chemistry, Sang Myung University) ;
  • Lee, Hyun Kyung (Department of Industrial Chemistry, Sang Myung University)
  • Received : 2015.01.26
  • Accepted : 2015.03.27
  • Published : 2015.04.30

Abstract

The PTMSP/PDMS graft copolymer were synthesized from the PTMSP[poly(1-trimethylsilyl-1-propyne)] and the PDMS[poly(dimethylsiloxane)] and then the PTMSP/PDMS-borosilicate composite membranes were prepared by adding the porous borosilicates to the PTMSP/PDMS graft copolymer. The number-average molecular weight (${\bar{M}}_n$) and the weight-average molecular weight (${\bar{M}}_w$) of PTMSP/PDMS graft copolymer were 460,000 and 570,000 respectively, and glass transition temperature ($T_g$) of PTMSP/PDMS graft copolymer appeared at $33.53^{\circ}C$ according to DSC analysis. According to the TGA measurements, the addition of borosilicate to the PTMSP/PDMS graft copolymer leaded the decreased weight loss and the completed weight loss temperature went down. SEM observation showed that borosilicate was dispersed in the PTMSP/PDMS-borosilicate composite membranes with the size of $1{\sim}5{\mu}m$. Gas permeation experiment indicated that the addition of borosilicate to PTMSP/PDMS graft copolymer resulted in the increase in free volume, cavity and porosity resulting in the gradual shift of the mechanism of the gas permeation from solution diffusion to molecular sieving surface diffusion, and Knudsen diffusion. Consequently, the permeability of $H_2$ and $N_2$ increased and selectivity ($H_2/N_2$) decreased as the contents of borosilicate increased.

PTMSP와 PDMS로부터 합성된 PTMSP/PDMS 그라프트 공중합체에 다공성 borosilicate를 0~5 wt% 첨가하여 PTMSP/PDMS-borosilicate 복합막을 제조하였다. 합성된 PTMSP/PDMS 그라프트 공중합체의 수평균분자량(${\bar{M}}_n$)은 460,000이었고, 중량평균분자량(${\bar{M}}_w$)은 570,000이었으며, 유리전이온도($T_g$)는 $33.53^{\circ}C$에서 나타났다. TGA 측정에 의하면 PTMSP/PDMS에 borosilicate가 첨가되면 복합막의 감량이 작아지고 감량이 완결되는 온도도 낮아졌다. SEM측정에 의하면 PTMSP/PDMS-borosilicate 복합막 내에 들어있는 borosilicate는 $1{\sim}5{\mu}m$ 크기로 분산되어 있었다. 기체투과 실험에 의하면 PTMSP/PDMS-borosilicate가 첨가되면서 자유부피, 공동, 기공률이 증가하여 기체투과가 용해확산에 의한 것보다 분자체거름, 표면확산, Knudsen 확산에 의해 일어나는 경우가 점차 증가하여 $H_2$$N_2$의 투과도는 증가하고 선택도($H_2/N_2$)는 감소하였다.

Keywords

References

  1. T. Masuda, E. Isobe, T. Higashimura, and K. Takada, "Poly[1-(trimethylsilyl)-1-propyne]: A new high polymer synthesized with transition metal catalysts and characterized by extremely high gas permeability", J. Am. Chem. Soc., 105, 7473 (1983). https://doi.org/10.1021/ja00363a061
  2. T. Nakagawa, T. Saito, S. Asakawa, and Y. Saito, "Polyacetylene derivatives as membranes for gas separation", Gas Sep. Purif., 2, 3 (1988). https://doi.org/10.1016/0950-4214(88)80035-5
  3. W. J. Koros, B. J. Story, S. M. Jordan, K. O'brien, and G. R. Husk, "Material selection considerations for gas separation", Polym. Eng. Sci., 27, 603 (1987). https://doi.org/10.1002/pen.760270812
  4. L. C. Witchey-Lakshmanan, H. B. Hopfenberg, and R. T. Chern, "Sorption and transport of organic vapors in poly[1-(trimethylsilyl)-1-propyne]", J. Membr. Sci., 48, 321 (1990). https://doi.org/10.1016/0376-7388(90)85013-B
  5. T. C. Merkel, R. P. Gupta, B. S. Turk, and B. D. Freeman, "Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures", J. Membr. Sci., 191, 85 (2001). https://doi.org/10.1016/S0376-7388(01)00452-5
  6. N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol'skii, "Gas and vapor permeation and sorption in poly(trimethylsilylpropyne)", J. Membr. Sci., 60, 13 (1991). https://doi.org/10.1016/S0376-7388(00)80321-X
  7. Y. Ichiraku and S. A. Srern, "An investigation of the high gas permeability of poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 34, 5 (1987). https://doi.org/10.1016/S0376-7388(00)80017-4
  8. K. Nagai, S. Kanehashi, S. Tabei, and T. Nakagawa, "Nitrogen permeability and carbon dioxide solubility in poly(1-trimethylsilyl-1-propyne)-based binary substituted polyacetylene blends", J. Membr. Sci., 251, 101 (2005). https://doi.org/10.1016/j.memsci.2004.10.041
  9. T. M. Madkour, "Development of the molecular design rules of ultra-permeable poly[1-(trimethylsilyl)-1-propyne] membranes", Polymer, 41, 7489 (2000). https://doi.org/10.1016/S0032-3861(00)00083-5
  10. I. Pinnau and L. G. Toy, "Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 116, 199 (1996). https://doi.org/10.1016/0376-7388(96)00041-5
  11. M. Langsam and L. M. Robeson, "Substituted propyne polymers-part II. Effects of aging on the gas permeability properties of poly[1-(trimethylsilyl)-1-propyne] for gas separation membranes", Polym. Eng. Sci., 29, 44 (1989). https://doi.org/10.1002/pen.760290109
  12. M. Yoshikawa, M. Kishida, M. Tanigaki, and W. Eguchi, "Novel liquid membrane transport system for tryptophan", J. Membr. Sci., 47, 53 (1989). https://doi.org/10.1016/S0376-7388(00)80859-5
  13. K. Nagai, A. Higuchi, and T. Nakagawa, "Bromination and gas permeability of poly(1-trimethylsilyl-1-propyne) membrane", J. Appl. Polym. Sci., 54, 1207 (1994). https://doi.org/10.1002/app.1994.070540903
  14. L. Starannikova, V. Khodzhaeva, and Yu. Yampolskii, "Mechanism of aging of poly[1-(trimethylsilyl)-1-propyne] and its effect on gas permeability", J. Membr. Sci., 244, 183 (2004). https://doi.org/10.1016/j.memsci.2004.06.051
  15. K. Nagai and T. Nakagawa, "Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts", J. Membr. Sci., 105, 261 (1995). https://doi.org/10.1016/0376-7388(95)00065-K
  16. T. Nakagawa, S. Fujisaki, H. Nakano, and A. Higuchi, "Physical modification of poly[1-{trimethylsilyl)-1-propyne] membranes for gas separation", J. Membr. Sci., 94, 183 (1994). https://doi.org/10.1016/0376-7388(93)E0169-K
  17. Y. Nagase, S. Mori, and K. Matsui, "Chemical modification of poly(substituted-acetylene). III. Synthesis and gas permeability of poly(1-phenyl-1-propyne)/poly(dimethylsiloxane) graft copolymer", J. Polym. Sci., 26, 3131 (1988). https://doi.org/10.1002/pola.1988.080261122
  18. Y. Nagase, T. Ueda, K. Matsui, and M. Uchikura, "Chemical modification of poly(seda, Kiyoh-acetylene). I. Synthesis and gas permeability of poly(1-trimethylsilyl-1-propyne)/poly(dimethylsiloxane) graft copolymer", J. Polym. Sci., Part B: Polym. Phys., 29, 171 (1991). https://doi.org/10.1002/polb.1991.090290204
  19. Y. S. Kang, E. M. Shin, B. Jung, and J. J. Kim, "Composite membranes of poly(1-trimethylsilyl-1-propyne) and poly(dimethyl siloxane) and their pervaporation properties for ethanol-water mixture", J. Appl. Polym. Sci, 53, 317 (1994). https://doi.org/10.1002/app.1994.070530308
  20. D. P. Queiroz and M. N. D'Pinho, "Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes", Polymer, 46, 2346 (2005). https://doi.org/10.1016/j.polymer.2004.12.056
  21. B. D. Ratner, "Surface characterization of biomaterials by electron spectroscopy for chemical analysis", Ann. Biomed. Eng., 11, 313 (1983). https://doi.org/10.1007/BF02363290
  22. W. J. Ward III, W. R. Browall, and R. M. Salemme, "Ultrathin silicone/polycarbonate membranes for gas separation processes" J. Membr. Sci., 1, 99 (1976). https://doi.org/10.1016/S0376-7388(00)82259-0
  23. P. C. Lebaron and T. J. Pinnavaia, "Clay nanolayer reinforcement of a silicone elastomer", Chem. Mater., 13, 3760 (2001). https://doi.org/10.1021/cm010982m
  24. S. L. Hong and T. B. Kang, "Separation of $H_2$/$N_2$ gas mixture by PTMSP/PDMS-PEI composite membrane", Membr. J., 14(4), 298 (2004).
  25. D. Gomes, S. P. Nunes, and K. Peinemann, "Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites", J. Membr. Sci., 246, 13 (2005). https://doi.org/10.1016/j.memsci.2004.05.015
  26. T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, and A. J. Hill, "Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne)", Macromolecules, 36, 6844 (2003). https://doi.org/10.1021/ma0341566
  27. K. D. Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer, and I. F. J. Vankelecom, "Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics", J. Membr. Sci., 278, 83 (2006). https://doi.org/10.1016/j.memsci.2005.10.046
  28. J. I. Ha and T. B. Kang, "Separation of $H_2$ and $N_2$ by PDMS-NaYzeolite composite membranes", Membr. J., 20, 47 (2010).
  29. R. Govind and D. Atnoor, "Development of a composite palladium membrane for selective hydrogen separation at high temperature", Ind. Eng. Chem. Res., 30, 591 (1991). https://doi.org/10.1021/ie00051a024
  30. S. Uemiya, N. Sato., H. Ando, Y. Kude, T. Matsuda, and E. Kikuchi, "Separation of hydrogen through palladium thin film supported on a porous glass tube", J. Membr. Sci., 56, 303 (1991). https://doi.org/10.1016/S0376-7388(00)83040-9
  31. G. Adachi, H. Nagai, and J. Shiokawa, "$LaNi_5$ film for hydrogen separation", J. Less-Common Metals, 97, L9 (1984). https://doi.org/10.1016/0022-5088(84)90043-2
  32. N. Naito, K. Nakahira, Y. Fukuda, H. Mori, and J. Tsubaki, "Process condition on the preparation of supported microporous $SiO_2$ membranes by sol-gel modification techniques", J. Membr. Sci., 129, 263 (1997). https://doi.org/10.1016/S0376-7388(97)00020-3
  33. D. Li, D. R. Seok, and S. T. Hwang, "Gas permeability of high-temperature-resistant silicone polymer-vycor glass membrane", J. Membr. Sci., 37, 267 (1998).
  34. D. Li and S. T. Hwang, "Gas separation by silicone based inorganic membrane at high temperature", J. Membr. Sci., 66, 119 (1992). https://doi.org/10.1016/0376-7388(92)87002-F
  35. A. B. Shelekhim, E. J. Grosgogeat, and S. T. Hwang, "Gas separation properties of a new polymer/ceramic composite membrane", J. Membr. Sci., 66, 129 (1992). https://doi.org/10.1016/0376-7388(92)87003-G
  36. S. H. Lee and T. B. Kang, "Separation of hydrogen-nitrogen gases by PTMSP-borosilicate composite membranes", Membra. J., 24, 438 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.438