DOI QR코드

DOI QR Code

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes

공중합체 폴리이미드를 이용한 기체분리막의 특성평가

  • Received : 2015.05.07
  • Accepted : 2015.05.28
  • Published : 2015.06.30

Abstract

We synthesized novel polyimides with high gas permeability and selectivity for application of gas separation membrane. 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) was used to improve gas permeability and 4,4-Methylenedianiline was used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method using Triethylamine and Acetic anhydride and their average molecular weights were over 100,000 g/mol. The glass temperature (Tg) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high Tg over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 10.1 barrer with high $O_2/N_2$ selectivity around 5.3. From this result, we confirm that these membranes have possibility to apply to gas separation membrane.

새로운 구조를 가진 공중합체 폴리이미드를 이용하여 고투과, 고선택성 기체 분리막을 제조하였다. 기체투과도와 용해도를 높이기 위해 무수물인 2,2-bis(3,4-carboxylphenyl) hexafluoropropane과 두 종류의 아민인 2,4,6-Trimethyl-1,3-phenylenediamine과 4,4-Methylenedianiline을 사용하여 신규 폴리이미드를 합성하였다. Triethylamine과 Acetic anhydride를 사용하여 화학적 이미드화 방법으로 공중합체를 합성하였으며, 평균분자량은 100,000 g/mol 이상을 나타내었다. 합성된 고분자의 열적 특성을 분석을 하기 위해 시차주사열량계(DSC)와 열중량분석기(TGA)로 측정을 하였으며, 유리전이온도(Tg)는 $300^{\circ}C$, 열분해 온도는 $500^{\circ}C$가 넘는 뛰어난 내열성을 나타내었다. 기체투과도 특성은 time-lag 장비를 사용하였으며 그 결과, 일반적인 폴리이미드의 경우 대부분 기체투과도가 1 barrer 이하의 수치를 보이지만, 합성된 고분자의 경우 산소투과도 10.10 barrer과 산소/질소 선택도의 경우 5.3으로 고투과, 고선택도를 나타내어 기체 분리막 분야에 적용 가능성을 확인할 수 있었다. 합성된 고분자 중 기체투과특성이 더 우수한 공중합 폴리이미드를 사용하여 중공사를 제조하였고, 이를 이용하여 기체투과특성을 측정하였다.

Keywords

References

  1. J. R. Li, Y. Ma, M. C. McCarthy, J. Sculleya, J. Yub, H. K. Jeong, P. B. Balbuena, and H. C. Zhou, "Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks", J. Membr. Sci., 325, 1 (2008). https://doi.org/10.1016/j.memsci.2008.07.029
  2. C. E. Powell and G. G. Qiao, "Polymeric $CO_{2}/N_{2}$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 279, 1 (2006). https://doi.org/10.1016/j.memsci.2005.12.062
  3. J. H. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008). https://doi.org/10.1016/j.memsci.2008.01.031
  4. S. E. B. Kruczek and T. Matsuura, "Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance", J. Membr. Sci., 167, 203 (2000). https://doi.org/10.1016/S0376-7388(99)00292-6
  5. M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", J. Membr. Sci., 50, 285 (1990). https://doi.org/10.1016/S0376-7388(00)80626-2
  6. C. H. Jung, J. E. Lee, S. H. Han, H. B. Park, and Y. M. Lee, "Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation", J. Membr. Sci., 350, 301 (2010). https://doi.org/10.1016/j.memsci.2010.01.005
  7. T. S. Chung, W. H. Lin, and R. H. Vora, "Gas transport properties of 6FDA-durene/1,3-phenylenediamine (mPDA) copolyimides", J. Appl. Polym. Sci., 81, 3552 (2001). https://doi.org/10.1002/app.1812
  8. E. H. Kim, C. Y. Park, and J. H. Kim, "Gas Transport Properties of Soluble Polyimides Containing Alicyclic Dianhydride", Membr. J., 24, 100 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.100
  9. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  10. S. Xiao, X. Feng, and R. Y. M. Huang, "Correlation Synthetic 6FDA-ODA Copolyimide Membranes for Gas Separation and Pervaporation: Correlation of Separation Properties with Diamine Monomers" Polymer Engineering & Science, 48, 795 (2008). https://doi.org/10.1002/pen.21007
  11. J. Kruse, J. Kanzow, K. Ratzke, F. Faupel, M. Heuchel, J. Frahn, and D. Hofmann, "Free volume in polyimides: positron annihilation experiments and molecular modeling", Macromolecules, 38, 9638 (2005). https://doi.org/10.1021/ma0473521
  12. H. C. Koh, S. Y. Ha, and S. Y. Nam, "Preparation and Properties of Hollow Fiber Membrane for Gas Separation Using CTA", Membr. J., 21, 98 (2010).
  13. Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wang, and Z. E. Qi, "Preparation and properties of hybrids of organo soluble polyimide and montmorillonite with various chemical surface modification methods", Polymer, 40, 4407 (1999). https://doi.org/10.1016/S0032-3861(98)00675-2
  14. S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and Properties of Chlorine-Resistance Loose Reverse Osmosis Hollow-fiber Membrane", Membr. J., 20, 304 (2010).