DOI QR코드

DOI QR Code

THE LIMITING CASE OF SEMICONTINUITY OF AUTOMORPHISM GROUPS

  • Received : 2014.09.04
  • Published : 2015.07.31

Abstract

In this paper we study the semicontinuity of the automorphism groups of domains in multi-dimensional complex space. We give examples to show that known results are sharp (in terms of the required boundary smoothness).

Keywords

References

  1. B. Fridman, D. Ma, and E. Poletski, Upper semicontinuity of the dimensions of automorphism groups of domains in ${\mathbb{C}}^N$, Amer. J. Math. 125 (2003), no. 2, 289-299. https://doi.org/10.1353/ajm.2003.0011
  2. R. E. Greene and K.-T. Kim, Stably-interior points and the semicontinuity of the automorphism group, Math. Z. 277 (2014), no. 3-4, 909-916. https://doi.org/10.1007/s00209-014-1284-8
  3. R. E. Greene, K.-T. Kim, S. G. Krantz, and A.-R. Seo, Semicontinuity of automorphism groups of strongly pseudoconvex domains: the low differentiability case, Pacific J. Math. 262 (2013), no. 2, 365-395. https://doi.org/10.2140/pjm.2013.262.365
  4. R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425-446. https://doi.org/10.1007/BF01457445
  5. R. E. Greene and S. G. Krantz, Normal families and the semicontinuity of isometry and automorphism groups, Math. Z. 190 (1985), no. 4, 455-467. https://doi.org/10.1007/BF01214745
  6. S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 3 (1983), no. 3, 193-260.
  7. S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001.
  8. S. G. Krantz, Explorations in Harmonic Analysis, Birkhauser Publishing, Boston, 2009.
  9. L. Lempert and L. Rubel, An independence result in several complex variables, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1055-1065. https://doi.org/10.1090/S0002-9939-1991-1052577-8