# THE LIMITING CASE OF SEMICONTINUITY OF AUTOMORPHISM GROUPS

STEVEN G. KRANTZ

ABSTRACT. In this paper we study the semicontinuity of the automorphism groups of domains in multi-dimensional complex space. We give examples to show that known results are sharp (in terms of the required boundary smoothness).

#### 1. Introduction

The paper [4] was the first work to study the semicontinuity of automorphism groups of domains in complex space. The main result there is as follows:

**Theorem 1.1.** Let  $\Omega^* \subseteq \mathbb{C}^n$  be a strongly pseudoconvex domain with smooth boundary. Then there is a neighborhood  $\mathcal{U}$  of  $\Omega^*$  in the  $C^{\infty}$  topology on domains (that is to say,  $\mathcal{U}$  is a collection of domains) so that, if  $\Omega \in \mathcal{U}$ , then  $\operatorname{Aut}(\Omega)$  is a subgroup of  $\operatorname{Aut}(\Omega^*)$ . Moreover, there is a  $C^{\infty}$  mapping  $\Psi$  from  $\overline{\Omega}$  to  $\overline{\Omega}_0$  so that

$$\operatorname{Aut}(\Omega)\ni\varphi\longmapsto\Psi\circ\varphi\circ\Psi^{-1}$$

is an injective group homomorphism from  $\operatorname{Aut}(\Omega)$  to  $\operatorname{Aut}(\Omega^*)$ .

Over the years, the hypothesis of smooth or  $C^{\infty}$  boundary in this theorem has been weakened. In the paper [5], the hypothesis was weakened (using an entirely different argument) to  $C^2$  boundary smoothness. In the paper [3], yet another approach to the  $C^2$  boundary smoothness situation was described. The paper [2] treats the case of  $C^1$  boundary smoothness. Also the paper [1] treats other points of view, such as the dependence on the dimension of the automorphism group.

In the present paper we show that  $\mathbb{C}^2$  boundary smoothness is sharp for this type of result.

Received September 4, 2014; Revised December 24, 2014. 2010 Mathematics Subject Classification. 32M05, 32H02.

Key words and phrases. biholomorphism, automorphism groups, semicontinuity.

©2015 Korean Mathematical Society

## 2. Notation, terminology, and enunciation of results

For us a *domain* in  $\mathbb{C}^n$  is a connected, open set. We generally denote a domain by  $\Omega$ . We let the *automorphism group* of  $\Omega$ , denoted by Aut  $(\Omega)$ , be the collection of biholomorphic selfmaps of  $\Omega$ . These form a group with the binary relation of composition. The topology on Aut  $(\Omega)$  is the compact-open topology (equivalently, the topology of uniform convergence on compact sets).

If  $\Omega$  is a domain with at least  $C^1$  boundary, then we equip it with a defining function  $\rho$ . This is a  $C^1$  function defined on a neighborhood U of  $\partial\Omega$  so that

$$\Omega \cap U = \{ z \in U : \rho(z) < 0 \}.$$

We generally require that  $\nabla \rho \neq 0$  on  $\partial \Omega$ , so that the outward normal vector is well defined at each boundary point. We say that  $\Omega$  has  $C^k$  boundary if it has a defining function that is  $C^k$  (that is to say, k-times continuously differentiable).

Now fix a domain  $\Omega = \{z \in \mathbb{C}^n : \rho(z) < 0\}$  with  $C^k$  boundary. Let  $\epsilon > 0$ . We say that a collection of domains  $\mathcal{U}$  is a subbasic  $C^k$  neighborhood of  $\Omega$  if

$$\mathcal{U} = \left\{ \Omega' : \Omega' = \left\{ w \in \mathbb{C}^n : \rho'(w) < 0 \right\} \text{ and } \|\rho - \rho'\|_{C^k} < \epsilon \right\}.$$

These subbasic sets of course generate a  $C^k$  topology on the set of all bounded domains with  $C^k$  boundary. In this paper we focus our attention on bounded domains. We also will have use for the  $C^{1,1}$  topology on domains, and it is defined similarly.

Now the main result of the present paper is as follows.

**Theorem 2.1.** There exists a domain  $\Omega^* \subseteq \mathbb{C}^2$  having  $C^{1,1}$  boundary and a sequence of smoothly bounded domains  $\Omega_K$  so that

- (a) The domains  $\Omega_K$  converge, as  $j \to \infty$ , to  $\Omega^*$  in the  $C^{1,1}$  topology.
- (b) Each domain  $\Omega_K$  has automorphism group containing  $\mathbb{Z}$ .
- (c) The domain  $\Omega^*$  is rigid. That is to say,  $\Omega^*$  has no automorphism except for the identity mapping.

So we see from this result that there is no semicontinuity theorem in the  $C^{1,1}$  topology.

### 3. Proof of the theorem

Let B denote the unit ball in  $\mathbb{C}^2$ . We restrict attention to  $\mathbb{C}^2$  just to simplify the notation a bit. The proof of an analogous result in n dimensions is quite similar.

Let  $\varphi$  be a  $C_c^{\infty}$  function supported in the Euclidean ball  $B(0,\delta)$  of center the origin and radius  $\delta > 0$ . We assume that  $\varphi$  is identically equal to 1 on  $B(0,\delta/2)$ . Now, for  $K \geq 1$  we specify the defining function

$$\widetilde{\rho}_K(w_1, w_2) = |w_2|^2 - \operatorname{Im} w_1 - \sum_{k=0}^K \sum_{j=-\infty}^\infty 2^{2jk} \varphi\left(k + 2^{-2jk} w_1, 2^{-jk} w_2\right).$$

Let

$$\widetilde{\Omega}_K = \{(w_1, w_2) \in \mathbb{C}^2 : \widetilde{\rho}_K(w_1, w_2) < 0\}.$$

This new domain should be compared to the defining function for the Siegel upper half space which is given by

$$\widetilde{\rho}_{\mathbf{U}} = |w_2|^2 - \operatorname{Im} w_1.$$

Of course it is well known that the Siegel upper half space  ${\bf U}$  is biholomorphic to the unit ball B. Indeed, the relevant mappings are

$$\Phi: B \to \mathbf{U} 
(z_1, z_2) \mapsto \left(i \cdot \frac{1 - z_1}{1 + z_1}, \frac{z_2}{1 + z_1}\right)$$

and

$$\Phi^{-1}: \mathbf{U} \to B$$

$$(w_1, w_2) \mapsto \left(\frac{i - w_1}{i + w_1}, \frac{2iw_w}{i + w_1}\right).$$

So we think of  $\widetilde{\rho}_K$  as defining a perturbation of the Siegel upper half space **U**. Now we use  $\Phi^{-1}$  to pull this perturbed domain back to a perturbation of the unit ball B. Now let

$$\Omega_K = \Phi^{-1}(\widetilde{\Omega}_K).$$

Of course, by inspection,  $\Omega_K$  has  $C^{\infty}$  smooth boundary except at the points  $(\pm 1,0)$  where the "bumps" coming from the translates of  $\varphi$  accumulate. We need to say something about the boundary smoothness at those two exceptional points, and we need to say something about the automorphism group of  $\Omega_K$  for each K. Finally, we need to specify what the limit of the domains  $\Omega_K$  is as  $K \to +\infty$ .

Examining our list of desiderata, we see that, with

$$\widetilde{\Omega}^* = \{(w_1, w_2) \in \mathbb{C}^2 : \widetilde{\rho}^*(w_1, w_2) < 0\}$$

and

$$\widetilde{\rho}^* = |w_2|^2 - \operatorname{Im} w_1 - \sum_{k=0}^{\infty} \sum_{j=-\infty}^{\infty} 2^{2jk} \varphi \left( k + 2^{-2jk} w_1, 2^{-jk} w_2 \right),$$

and

$$\Omega^* = \Phi^{-1}(\widetilde{\Omega}^*),$$

then  $\Omega_K \to \Omega^*$  in some sense as  $K \to +\infty$ . In point of fact, the  $\Omega_K$  certainly converge to  $\Omega^*$  in the Hausdorff metric on sets. And it is also clear from inspection that the defining functions  $\rho_K$  for the  $\Omega_K$  (obtained by pulling back the defining functions for the  $\widetilde{\Omega}_K$ ) are bounded in the  $C^2$  topology. In point of fact, a simple calculation with  $\Phi^{-1}$  shows that the  $j^{\text{th}}$  bump in the  $k^{\text{th}}$  group has height  $\approx 2^{-2|j|k}$  and diameter  $\approx 2^{-|j|k}$ . The main point being that the decay is quadratic as the two extreme points are approached. That is why we get boundedness in the  $C^2$  norm.

It follows then, by a version of the Landau inequalities (for which see [6]), that  $\Omega_K$  converges to  $\Omega^*$  in the  $C^{1,1}$  topology.

Now what about the automorphism group of  $\Omega_K$ ? It is easiest to instead examine the automorphism group of  $\widetilde{\Omega}_K$  (which is of course the same group). Thanks to work in [9], we know that any automorphism of  $\widetilde{\Omega}_K$  must be an automorphism of the Siegel upper half space  $\mathbf{U}$  which preserves the "bumps" that are created by the translates of  $\varphi$ . We conclude that the only possible automorphisms are dilations of the Siegel upper half space (see [8, Ch. 10]). Examining the definition of  $\widetilde{\rho}_K$ , we see that a dilation

$$\alpha_{\delta}(w_1, w_2) = (\delta^2 w_1, \delta w_2)$$

can leave this defining function invariant if and only if  $\delta = 2^m$  and m is divisible by  $1, 2, \ldots, K$ . In detail,

$$\widetilde{\rho}_{K}(2^{2m}w_{1}, 2^{m}w_{2}) = |2^{m}w_{2}|^{2} - \operatorname{Im}\left(2^{2m}w_{1}\right)$$

$$-\sum_{k=0}^{K} \sum_{j=-\infty}^{\infty} 2^{2jk} \varphi\left(k + 2^{-2jk} 2^{2m} w_{1}, 2^{-jk} 2^{m} w_{2}\right)$$

$$= |2^{m}w_{2}|^{2} - \operatorname{Im}\left(2^{2m}w_{1}\right)$$

$$-\sum_{k=0}^{K} \sum_{j=-\infty}^{\infty} 2^{2jk} \varphi\left(k + 2^{2m-2jk} w_{1}, 2^{m-jk} w_{2}\right).$$

Multiplying by  $2^{-2m}$ , we see that we must examine

$$|w_2|^2 - \operatorname{Im} w_1 - \sum_{k=0}^K \sum_{j=-\infty}^\infty 2^{2jk-2m} \varphi\left(k + 2^{-2jk} 2^{2m} w_1, 2^{-jk} 2^m w_2\right).$$

We want to shift the index of summation by replacing j with j + m/k, but we can only do so if m is divisible by k for every k = 1, 2, ..., K. The result of this shift is

$$|w_2|^2 - \operatorname{Im} w_1 - \sum_{k=0}^K \sum_{j=-\infty}^\infty 2^{2jk} \varphi \left(k + 2^{-2jk} w_1, 2^{-jk} w_2\right).$$

So we see that the defining function has been preserved under the dilation. Hence  $w \mapsto \alpha_{2^m}(w)$  is an automorphism of  $\widetilde{\Omega}_K$  provided that  $k \mid m$  for  $k = 1, 2, \ldots, K$ . In particular, we must demand that  $m \geq K$ . Since iterates of this dilation are also automorphisms, we conclude that the automorphism group of  $\widetilde{\Omega}_K$  contains a copy of  $\mathbb{Z}$ .

The analysis in the last paragraph also shows that the automorphism group of  $\widetilde{\Omega}^*$  does not contain any nontrivial dilations. For, if it did, then it would have to be a dilation of magnitude  $2^m$  with  $m \geq K$  for every positive K. And that is impossible. So the automorphism group of  $\widetilde{\Omega}^*$  is trivial—it contains only the identity map.

In conclusion, we have verified all the required properties of the  $\widetilde{\Omega}_K$  (and hence also of the  $\Omega_K$ ) and of  $\Omega^*$ . Thus the theorem is proved.

## References

- B. Fridman, D. Ma, and E. Poletski, Upper semicontinuity of the dimensions of automorphism groups of domains in C<sup>N</sup>, Amer. J. Math. 125 (2003), no. 2, 289–299.
- [2] R. E. Greene and K.-T. Kim, Stably-interior points and the semicontinuity of the automorphism group, Math. Z. 277 (2014), no. 3-4, 909-916.
- [3] R. E. Greene, K.-T. Kim, S. G. Krantz, and A.-R. Seo, Semicontinuity of automorphism groups of strongly pseudoconvex domains: the low differentiability case, Pacific J. Math. **262** (2013), no. 2, 365–395.
- [4] R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425–446.
- [5] \_\_\_\_\_\_, Normal families and the semicontinuity of isometry and automorphism groups, Math. Z. 190 (1985), no. 4, 455–467.
- [6] S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 3 (1983), no. 3, 193–260.
- [7] \_\_\_\_\_\_, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001.
- [8] \_\_\_\_\_\_, Explorations in Harmonic Analysis, Birkhäuser Publishing, Boston, 2009.
- [9] L. Lempert and L. Rubel, An independence result in several complex variables, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1055-1065.

DEPARTMENT OF MATHEMATICS
WASHINGTON UNIVERSITY IN ST. LOUIS
ST. LOUIS, MISSOURI 63130, USA
E-mail address: sk@math.wustl.edu