THE LIMITING CASE OF SEMICONTINUITY OF AUTOMORPHISM GROUPS STEVEN G. KRANTZ ABSTRACT. In this paper we study the semicontinuity of the automorphism groups of domains in multi-dimensional complex space. We give examples to show that known results are sharp (in terms of the required boundary smoothness). #### 1. Introduction The paper [4] was the first work to study the semicontinuity of automorphism groups of domains in complex space. The main result there is as follows: **Theorem 1.1.** Let $\Omega^* \subseteq \mathbb{C}^n$ be a strongly pseudoconvex domain with smooth boundary. Then there is a neighborhood \mathcal{U} of Ω^* in the C^{∞} topology on domains (that is to say, \mathcal{U} is a collection of domains) so that, if $\Omega \in \mathcal{U}$, then $\operatorname{Aut}(\Omega)$ is a subgroup of $\operatorname{Aut}(\Omega^*)$. Moreover, there is a C^{∞} mapping Ψ from $\overline{\Omega}$ to $\overline{\Omega}_0$ so that $$\operatorname{Aut}(\Omega)\ni\varphi\longmapsto\Psi\circ\varphi\circ\Psi^{-1}$$ is an injective group homomorphism from $\operatorname{Aut}(\Omega)$ to $\operatorname{Aut}(\Omega^*)$. Over the years, the hypothesis of smooth or C^{∞} boundary in this theorem has been weakened. In the paper [5], the hypothesis was weakened (using an entirely different argument) to C^2 boundary smoothness. In the paper [3], yet another approach to the C^2 boundary smoothness situation was described. The paper [2] treats the case of C^1 boundary smoothness. Also the paper [1] treats other points of view, such as the dependence on the dimension of the automorphism group. In the present paper we show that \mathbb{C}^2 boundary smoothness is sharp for this type of result. Received September 4, 2014; Revised December 24, 2014. 2010 Mathematics Subject Classification. 32M05, 32H02. Key words and phrases. biholomorphism, automorphism groups, semicontinuity. ©2015 Korean Mathematical Society ## 2. Notation, terminology, and enunciation of results For us a *domain* in \mathbb{C}^n is a connected, open set. We generally denote a domain by Ω . We let the *automorphism group* of Ω , denoted by Aut (Ω) , be the collection of biholomorphic selfmaps of Ω . These form a group with the binary relation of composition. The topology on Aut (Ω) is the compact-open topology (equivalently, the topology of uniform convergence on compact sets). If Ω is a domain with at least C^1 boundary, then we equip it with a defining function ρ . This is a C^1 function defined on a neighborhood U of $\partial\Omega$ so that $$\Omega \cap U = \{ z \in U : \rho(z) < 0 \}.$$ We generally require that $\nabla \rho \neq 0$ on $\partial \Omega$, so that the outward normal vector is well defined at each boundary point. We say that Ω has C^k boundary if it has a defining function that is C^k (that is to say, k-times continuously differentiable). Now fix a domain $\Omega = \{z \in \mathbb{C}^n : \rho(z) < 0\}$ with C^k boundary. Let $\epsilon > 0$. We say that a collection of domains \mathcal{U} is a subbasic C^k neighborhood of Ω if $$\mathcal{U} = \left\{ \Omega' : \Omega' = \left\{ w \in \mathbb{C}^n : \rho'(w) < 0 \right\} \text{ and } \|\rho - \rho'\|_{C^k} < \epsilon \right\}.$$ These subbasic sets of course generate a C^k topology on the set of all bounded domains with C^k boundary. In this paper we focus our attention on bounded domains. We also will have use for the $C^{1,1}$ topology on domains, and it is defined similarly. Now the main result of the present paper is as follows. **Theorem 2.1.** There exists a domain $\Omega^* \subseteq \mathbb{C}^2$ having $C^{1,1}$ boundary and a sequence of smoothly bounded domains Ω_K so that - (a) The domains Ω_K converge, as $j \to \infty$, to Ω^* in the $C^{1,1}$ topology. - (b) Each domain Ω_K has automorphism group containing \mathbb{Z} . - (c) The domain Ω^* is rigid. That is to say, Ω^* has no automorphism except for the identity mapping. So we see from this result that there is no semicontinuity theorem in the $C^{1,1}$ topology. ### 3. Proof of the theorem Let B denote the unit ball in \mathbb{C}^2 . We restrict attention to \mathbb{C}^2 just to simplify the notation a bit. The proof of an analogous result in n dimensions is quite similar. Let φ be a C_c^{∞} function supported in the Euclidean ball $B(0,\delta)$ of center the origin and radius $\delta > 0$. We assume that φ is identically equal to 1 on $B(0,\delta/2)$. Now, for $K \geq 1$ we specify the defining function $$\widetilde{\rho}_K(w_1, w_2) = |w_2|^2 - \operatorname{Im} w_1 - \sum_{k=0}^K \sum_{j=-\infty}^\infty 2^{2jk} \varphi\left(k + 2^{-2jk} w_1, 2^{-jk} w_2\right).$$ Let $$\widetilde{\Omega}_K = \{(w_1, w_2) \in \mathbb{C}^2 : \widetilde{\rho}_K(w_1, w_2) < 0\}.$$ This new domain should be compared to the defining function for the Siegel upper half space which is given by $$\widetilde{\rho}_{\mathbf{U}} = |w_2|^2 - \operatorname{Im} w_1.$$ Of course it is well known that the Siegel upper half space ${\bf U}$ is biholomorphic to the unit ball B. Indeed, the relevant mappings are $$\Phi: B \to \mathbf{U} (z_1, z_2) \mapsto \left(i \cdot \frac{1 - z_1}{1 + z_1}, \frac{z_2}{1 + z_1}\right)$$ and $$\Phi^{-1}: \mathbf{U} \to B$$ $$(w_1, w_2) \mapsto \left(\frac{i - w_1}{i + w_1}, \frac{2iw_w}{i + w_1}\right).$$ So we think of $\widetilde{\rho}_K$ as defining a perturbation of the Siegel upper half space **U**. Now we use Φ^{-1} to pull this perturbed domain back to a perturbation of the unit ball B. Now let $$\Omega_K = \Phi^{-1}(\widetilde{\Omega}_K).$$ Of course, by inspection, Ω_K has C^{∞} smooth boundary except at the points $(\pm 1,0)$ where the "bumps" coming from the translates of φ accumulate. We need to say something about the boundary smoothness at those two exceptional points, and we need to say something about the automorphism group of Ω_K for each K. Finally, we need to specify what the limit of the domains Ω_K is as $K \to +\infty$. Examining our list of desiderata, we see that, with $$\widetilde{\Omega}^* = \{(w_1, w_2) \in \mathbb{C}^2 : \widetilde{\rho}^*(w_1, w_2) < 0\}$$ and $$\widetilde{\rho}^* = |w_2|^2 - \operatorname{Im} w_1 - \sum_{k=0}^{\infty} \sum_{j=-\infty}^{\infty} 2^{2jk} \varphi \left(k + 2^{-2jk} w_1, 2^{-jk} w_2 \right),$$ and $$\Omega^* = \Phi^{-1}(\widetilde{\Omega}^*),$$ then $\Omega_K \to \Omega^*$ in some sense as $K \to +\infty$. In point of fact, the Ω_K certainly converge to Ω^* in the Hausdorff metric on sets. And it is also clear from inspection that the defining functions ρ_K for the Ω_K (obtained by pulling back the defining functions for the $\widetilde{\Omega}_K$) are bounded in the C^2 topology. In point of fact, a simple calculation with Φ^{-1} shows that the j^{th} bump in the k^{th} group has height $\approx 2^{-2|j|k}$ and diameter $\approx 2^{-|j|k}$. The main point being that the decay is quadratic as the two extreme points are approached. That is why we get boundedness in the C^2 norm. It follows then, by a version of the Landau inequalities (for which see [6]), that Ω_K converges to Ω^* in the $C^{1,1}$ topology. Now what about the automorphism group of Ω_K ? It is easiest to instead examine the automorphism group of $\widetilde{\Omega}_K$ (which is of course the same group). Thanks to work in [9], we know that any automorphism of $\widetilde{\Omega}_K$ must be an automorphism of the Siegel upper half space \mathbf{U} which preserves the "bumps" that are created by the translates of φ . We conclude that the only possible automorphisms are dilations of the Siegel upper half space (see [8, Ch. 10]). Examining the definition of $\widetilde{\rho}_K$, we see that a dilation $$\alpha_{\delta}(w_1, w_2) = (\delta^2 w_1, \delta w_2)$$ can leave this defining function invariant if and only if $\delta = 2^m$ and m is divisible by $1, 2, \ldots, K$. In detail, $$\widetilde{\rho}_{K}(2^{2m}w_{1}, 2^{m}w_{2}) = |2^{m}w_{2}|^{2} - \operatorname{Im}\left(2^{2m}w_{1}\right)$$ $$-\sum_{k=0}^{K} \sum_{j=-\infty}^{\infty} 2^{2jk} \varphi\left(k + 2^{-2jk} 2^{2m} w_{1}, 2^{-jk} 2^{m} w_{2}\right)$$ $$= |2^{m}w_{2}|^{2} - \operatorname{Im}\left(2^{2m}w_{1}\right)$$ $$-\sum_{k=0}^{K} \sum_{j=-\infty}^{\infty} 2^{2jk} \varphi\left(k + 2^{2m-2jk} w_{1}, 2^{m-jk} w_{2}\right).$$ Multiplying by 2^{-2m} , we see that we must examine $$|w_2|^2 - \operatorname{Im} w_1 - \sum_{k=0}^K \sum_{j=-\infty}^\infty 2^{2jk-2m} \varphi\left(k + 2^{-2jk} 2^{2m} w_1, 2^{-jk} 2^m w_2\right).$$ We want to shift the index of summation by replacing j with j + m/k, but we can only do so if m is divisible by k for every k = 1, 2, ..., K. The result of this shift is $$|w_2|^2 - \operatorname{Im} w_1 - \sum_{k=0}^K \sum_{j=-\infty}^\infty 2^{2jk} \varphi \left(k + 2^{-2jk} w_1, 2^{-jk} w_2\right).$$ So we see that the defining function has been preserved under the dilation. Hence $w \mapsto \alpha_{2^m}(w)$ is an automorphism of $\widetilde{\Omega}_K$ provided that $k \mid m$ for $k = 1, 2, \ldots, K$. In particular, we must demand that $m \geq K$. Since iterates of this dilation are also automorphisms, we conclude that the automorphism group of $\widetilde{\Omega}_K$ contains a copy of \mathbb{Z} . The analysis in the last paragraph also shows that the automorphism group of $\widetilde{\Omega}^*$ does not contain any nontrivial dilations. For, if it did, then it would have to be a dilation of magnitude 2^m with $m \geq K$ for every positive K. And that is impossible. So the automorphism group of $\widetilde{\Omega}^*$ is trivial—it contains only the identity map. In conclusion, we have verified all the required properties of the $\widetilde{\Omega}_K$ (and hence also of the Ω_K) and of Ω^* . Thus the theorem is proved. ## References - B. Fridman, D. Ma, and E. Poletski, Upper semicontinuity of the dimensions of automorphism groups of domains in C^N, Amer. J. Math. 125 (2003), no. 2, 289–299. - [2] R. E. Greene and K.-T. Kim, Stably-interior points and the semicontinuity of the automorphism group, Math. Z. 277 (2014), no. 3-4, 909-916. - [3] R. E. Greene, K.-T. Kim, S. G. Krantz, and A.-R. Seo, Semicontinuity of automorphism groups of strongly pseudoconvex domains: the low differentiability case, Pacific J. Math. **262** (2013), no. 2, 365–395. - [4] R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425–446. - [5] ______, Normal families and the semicontinuity of isometry and automorphism groups, Math. Z. 190 (1985), no. 4, 455–467. - [6] S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 3 (1983), no. 3, 193–260. - [7] ______, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001. - [8] ______, Explorations in Harmonic Analysis, Birkhäuser Publishing, Boston, 2009. - [9] L. Lempert and L. Rubel, An independence result in several complex variables, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1055-1065. DEPARTMENT OF MATHEMATICS WASHINGTON UNIVERSITY IN ST. LOUIS ST. LOUIS, MISSOURI 63130, USA E-mail address: sk@math.wustl.edu