DOI QR코드

DOI QR Code

Numerical Study on Variations in the Sealing Performance of Air Curtains in Large-Scale Factory Opening Considering Various Design Factors

대형 공장 개구부용 에어커튼의 설계 인자에 따른 차단 성능 변화에 대한 전산해석 연구

  • Moon, Jongmin (Dept. of Mechanical and Information Engineering, Univ. of Seoul) ;
  • Rhee, Gwang Hoon (Dept. of Mechanical and Information Engineering, Univ. of Seoul)
  • 문종민 (서울시립대학교 기계정보공학과) ;
  • 리광훈 (서울시립대학교 기계정보공학과)
  • Received : 2015.02.08
  • Accepted : 2015.06.24
  • Published : 2015.08.01

Abstract

In large-scale factories, there are usually openings in the building to increase the efficiency of workers. However, if the factory is heated during winter, openings significantly increase the heating load. Therefore, there is a need for air curtains to be installed at the top of openings in factories to reduce the heating load due to the cold air entering from outside. The main design variables of these air curtains are the discharge angle, speed, and temperature, etc. While there have already been many studies focusing on these design variables, the distance from the opening and the width of the discharge have not been studied even though they also affect the sealing performance. As a result, when the distance from the opening decreases and the width of the discharge increases, we realize an optimum air curtain performance. However, if the distance from the opening is about 1.5 m, by adjusting the discharge angle and the distance from the opening, the sealing performance of the air curtain is improved by 13.7%.

작업의 효율을 높이기 위해서 대형 공장에서 개구부는 주로 개방 되어 있다. 그러나 동절기에 공장에서 난방을 하는 경우 개방되어 있는 개구부는 난방부하를 상승시키는 큰 요인이다. 때문에 공장에서는 개구부 상단에 에어커튼을 설치하여 외부의 침기를 막아 난방부하를 낮춘다. 일반적인 에어커튼의 설계 변수로는 토출 각도와, 속도, 온도 등이 존재하며 이에 대한 연구는 이미 많이 진행되었다. 하지만, 공장이라는 공간적 특수성을 고려하였을 때, 기존에 연구되지 않은 개구부로부터의 이격 거리와 토출구 폭에 대한 부분도 차단 성능에 영향을 미친다. 그 결과 에어커튼은 이격 거리가 가깝고, 토출구 폭은 넓을수록 차단 성능이 좋았다. 이격 거리가 존재하더라도 토출구 폭을 증가시키면 차단 성능이 향상되었으며, 토출구 폭을 증가시킴으로써 약 13.7%의 차단 성능의 향상을 기대할 수 있다.

Keywords

References

  1. Jeong, S. Y., 1993, "Ventilation System for Large Factories," Journal of the SAREK., Vol. 22, No. 2, pp. 135-144.
  2. Cha, S. J., 1989, "Heating and Ventilating for Improving Large Factory's Indoor Condition," Journal of the SAREK., Vol. 18, No. 3, pp. 206-219.
  3. Choi, D.-W., Eum, H.-S., Yoon, J.-I., Choi, K.-H., Agung, B. and Yoo, J.-K., 2013, "Research on the Effective Energy Conservation in the Cold Storage Imbedded with Air Curtain System," Proceedings of the Korean Solar Energy Society spring annual conference, Vol. 33, No. 1, pp. 171-175.
  4. Joe, M.-J., Song, S.-Y. and Lim, J.-H., 2012, "A Study on the Air-tightness Criteria and Performance Improvement Methods of Domestic Curtain-wall Systems," Journal of the Architectural Institute of Korea, Vol. 28, No. 3, pp. 251-260.
  5. Costa, J. J., Oliveira, L. A. and Silva, M. C. G., 2006, "Energy Savings by Aerodynamic Sealing with a Downward-blowing Plane Air Curtain A Numerical Approach," Energy and Buildings, Vol. 38, pp. 1182-1193. https://doi.org/10.1016/j.enbuild.2006.02.003
  6. Sung, S.-K., 2010, "Performance Variation of the Air Curtain for Various Discharge Angles in Feating Space," Journal of the SAREK., Vol. 22, No. 3, pp. 57-63.
  7. Foster, A. M., Swain, M. J., Barrett, R., D'Agaro, P. and James, S. J., 2006, "Effectiveness and Optimum Jet Velocity for a Plane Jet Air Curtain Used to Restrict Cold Room Infiltration," International journal of refrigeration, Vol. 29, pp. 692-699. https://doi.org/10.1016/j.ijrefrig.2005.12.011
  8. Foster, A. M., Swain, M. J., Barrett, R. and D'Agaro, P. 2007, "Three-dimensional Effects of an Air Curtain Used to Restrict Cold Room Infiltration," Applied Mathematical Modeling, Vol. 31, pp. 1109-1123. https://doi.org/10.1016/j.apm.2006.04.005
  9. ASHRAE, 1992, "Cooling and Heating Load Calculation Manual," 2nd ed., American Society of Heating, Refrigerating and Air-Conditioning, Inc., Atlanta, GA.
  10. Janssen, W. J., Pearman, A. N. and Hill, T. J., 1979, "Calculating Infiltration: An Examination of Handbook Model," ASHRAE Transactions, Vol. 86, Pt. 2.
  11. Patankar, S. V., 1980, "Numerical Heat Transfer and Fluid Flow," McGraw-Hill, New York.
  12. Myong, H. K. and Kasagi, N., 1990, "A New Approach to the Improvement of the k-${\varepsilon}$ turbulence Model for Wall-bounded Shear Flows," International Journal of JSME (B), Vol. 33, No. 1, pp. 63-72.
  13. Siren, K., 2003, "Technical Dimensioning of a Vertically Upwards Blowing Air Curtain - Part I," Energy and Building, Vol. 35, pp. 681-695. https://doi.org/10.1016/S0378-7788(02)00223-2