DOI QR코드

DOI QR Code

25W급 순환유동층반응기에서 석탄과 우드펠릿의 혼소 특성 연구

The Co-Combustion Characteristics of Coal and Wood Pellet in a 25W Lab-scale Circulating Fluidized Bed Reactor

  • 김진호 (부산대학교 기계공학부) ;
  • 양상열 (한국남부발전) ;
  • 김규보 (부산대학교 화력발전에너지분석기술센터) ;
  • 전충환 (부산대학교 기계공학부)
  • 투고 : 2014.11.13
  • 심사 : 2015.06.27
  • 발행 : 2015.08.01

초록

순환유동층연소기술은 적용 연료의 다양화, 설비의 경제성 그리고 환경성이 우수하여 최근 전력생산기술로 관심이 증대되고 있으며 최근 전력생산을 위한 재생에너지 사용 의무규정에 따라 재생에너지의 연소특성을 파악하는 것이 중요하다. 따라서 본 연구에서는 순환유동층반응기에서의 석탄과 우드펠릿을 혼소하여 혼소율에 따른 배기배출물 특성과 반응기 내부 가스온도특성의 환경성과 연소성을 실험적으로 분석하여 나타내었다. 총 공급 발열량을 기준으로 각 연료의 공급량을 변경하여 혼소율을 결정하였다. 베드물질로 강모래(7호사)를 적용하였다. 순환유동층반응기에서 우드펠릿 혼소율 증가에 따라 후단부에서의 가스온도가 감소하였고, CO, NOx, HC 및 SOx의 발생량은 우드펠릿의 혼소비가 30% 이하의 경우 혼소비 증가에 따라 감소하는 경향을 나타내었지만 30% 이상의 경우 CO, HC 및 SOx 발생량은 오히려 증가하는 경향을 나타내었다.

Circulating Fluidized Bed(CFB) combustion has the several advantages which are the fuel flexibility, the economy, the efficiency and the environment. It is necessary to apply a renewable energy to produce electricity due to the Renewable Portfolio Standard(RPS) mandates recently. So, in this study, co-combustion with a coal and a wood pellet was investigated to evaluate the combustibility and the environment as function of blending ratio of them in a Lab-scale CFB reactor. To investigate the characteristics of the co-combustion, the blending ratio which is the weight of wood pellet by the total calorific value of the supplied, was considered. Bed material was a river sand(No. 7). As increasing the blending ratio, the exhausted gas emissions such as CO, NOx, HC and SOx were decreased. But in case of wood pellet over 30%, CO, HC and SOx emission were increased. And the gas temperatures at the downstream were decreased.

키워드

참고문헌

  1. http://www.knrec.or.kr/knrec/12/KNREC120700_02.asp.
  2. Bae, D. H. and Shun, D. W., 2005, "Development of Circulating Fluidized Bed Boiler for Refused Derived Fuel," KOSCO SYMPOSIUM, No. 31, pp. 71-77.
  3. Lee, J. S. Lee, E. L., An, M. H., Park, S. U., Shin, D., Hwang, J., 2004, "Combustion of RDF and RPF in a Lab-Scale Circulating Fluidized Bed," KOSCO SYMPOSIUM, No. 28, pp. 173-179.
  4. Jeong E. D. and Moon S. J., 2010, "Co-combustion Characteristics of Mixed Coal with Anthracite and Bituminous in a Circulating Fluidized Bed Boiler," THE PLANT JOURNAL, Vol. 6, No. 2, pp. 70-77.
  5. Leckner, B. and Karlsson, M., 1993, "Gaseous emissions from Circulating Fluidized Bed Combustion of Wood," Biomass and Bioenergy, Vol. 4, No. 5, PP. 379-389. https://doi.org/10.1016/0961-9534(93)90055-9
  6. Gayan P., Adanez J., Luis F. de Diego, Garcia-Laiano F., Cabanillas A., Bahillo A., Aho M. and Veijonen K., 2004, "Circulating fluidised bed co-combustion of coal and biomass," Fuel, 83, pp. 277-286. https://doi.org/10.1016/j.fuel.2003.08.003
  7. Leckner, B., Amand, L. E., Lucke, K. and Werther, J., 2004, "Gaseous Emissions from co-combustion of Sewage Sludge and Coal/Wood in a Fluidized Bed," Fuel, 83, pp. 477-486. https://doi.org/10.1016/j.fuel.2003.08.006
  8. Wang C. A., Liu Y., Zhang X. and Che D., 2011, "A Study on Coal Properties and Combustion Characteristics of Blended Coals in Northwestern China," Energy & Fuels, 25, 3634-3645. https://doi.org/10.1021/ef200686d
  9. Saikaew, T., Supudommak, P., Mekasut, L., Piumsomboon, P. and Kuchonthara, P., 2012, "Emission of NOx and N2O from Co-combustion of Coal and Biomasses in CFB Combustor," International Journal of Greenhouse Gas Control 10, pp. 26-32. https://doi.org/10.1016/j.ijggc.2012.05.014