DOI QR코드

DOI QR Code

Generation of Minicells from an Endotoxin-Free Gram-Positive Strain Corynebacterium glutamicum

  • Lee, Jin-Young (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Choy, Hyon E. (Department of Microbiology, Chonnam National University Medical School) ;
  • Lee, Jin-Ho (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Kim, Geun-Joong (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
  • Received : 2014.08.18
  • Accepted : 2014.10.21
  • Published : 2015.04.28

Abstract

Drug delivery systems (DDSs) incorporating bacterial minicells have been evaluated as a very powerful tool in view of biocompatibility. However, limited studies have been carried out on these systems, mainly using minicells from Salmonella sp. and Escherichia coli. Thus, we generated a new minicell-producing strain from an endotoxin-free Corynebacterium glutamicum by the inactivation of genes related to cell division. The two knockout strains, ${\Delta}parA$ and ${\Delta}ncgl1366$, showed distinct abilities to produce minicells. The resulting minicells were purified via sequential antibiotic treatments and centrifugations, which resulted in reproducible yields.

Keywords

References

  1. Date M, Itaya H, Matsui H, Kikuchi Y. 2006. Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett. Appl. Microbiol. 42: 66-70. https://doi.org/10.1111/j.1472-765X.2005.01802.x
  2. Huang SL. 2008. Liposomes in ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev. 60: 1167-1176. https://doi.org/10.1016/j.addr.2008.03.003
  3. Jivrajani M, Shrivastava N, Nivsarkar M. 2013. A combination approach for rapid and high yielding purification of bacterial minicells. J. Microbiol. Meth. 92: 340-343. https://doi.org/10.1016/j.mimet.2012.12.002
  4. Kim SH, Kim KS, Lee SR, Kim E, Kim MS, Lee EY, et al. 2009. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Bba-Biomembranes 1788: 2150-2159. https://doi.org/10.1016/j.bbamem.2009.08.001
  5. Letek M, Fiuza M, Ordonez E, Villadangos AF, Ramos A, Mateos LM, Gil JA. 2008. Cel l growth and cel l division in the rod-shaped actinomycete Corynebacterium glutamicum. Anton. Leeuw. Int. J. G 94: 99-109. https://doi.org/10.1007/s10482-008-9224-4
  6. MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, et al. 2009. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat. Biotechnol. 27: U643-U697. https://doi.org/10.1038/nbt.1547
  7. MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL, Paulin RP, et al. 2007. Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell. 11: 431-445. https://doi.org/10.1016/j.ccr.2007.03.012
  8. Nakayama K, Araki K, Kase H. 1978. Microbial production of essential amino acid with Corynebacterium glutamicum mutants. Adv. Exp. Med. Biol. 105: 649-661. https://doi.org/10.1007/978-1-4684-3366-1_31
  9. Park JU, Jo JH, Kim YJ, Chung SS, Lee JH, Lee HH. 2008. Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: Fusion of lambda operator with promoters isolated from C-ammoniagenes. J. Microbiol. Biotechn. 18: 639-647.
  10. Park SY, Lee JY, Chang WS, Choy HE, Kim GJ. 2011. A coupling process for improving purity of bacterial minicells by holin/lysin. J. Microbiol. Meth. 86: 108-110. https://doi.org/10.1016/j.mimet.2011.04.003
  11. Savic R, Luo LB, Eisenberg A, Maysinger D. 2003. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300: 615-618. https://doi.org/10.1126/science.1078192
  12. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
  13. Torchilin VP. 2006. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58: 1532-1555. https://doi.org/10.1016/j.addr.2006.09.009
  14. van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545. https://doi.org/10.1007/s002530051557
  15. Yamaichi Y, Niki H. 2000. Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 14656-14661. https://doi.org/10.1073/pnas.97.26.14656

Cited by

  1. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse vol.26, pp.5, 2015, https://doi.org/10.4014/jmb.1601.01053
  2. Minicells, Back in Fashion vol.198, pp.8, 2015, https://doi.org/10.1128/jb.00901-15
  3. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources vol.8, pp.None, 2015, https://doi.org/10.3389/fbioe.2020.618077
  4. Minicells from Highly Genome Reduced Escherichia coli: Cytoplasmic and Surface Expression of Recombinant Proteins and Incorporation in the Minicells vol.10, pp.10, 2015, https://doi.org/10.1021/acssynbio.1c00375
  5. Fighting Cancer with Bacteria and Their Toxins vol.22, pp.23, 2015, https://doi.org/10.3390/ijms222312980
  6. Bacteria and bacterial derivatives as delivery carriers for immunotherapy vol.181, pp.None, 2022, https://doi.org/10.1016/j.addr.2021.114085