DOI QR코드

DOI QR Code

파키스탄 북부 Gilgit-Baltistan 지역에서 산출된 아쿠아머린의 특성 연구

Gemological Characteristics of Aquamarine from the Gilgit-Baltistan of Northern Areas, Pakistan

  • 김성재 (한양대학교 공학대학원 보석학과) ;
  • 신동욱 (한양대학교 공학대학원 보석학과) ;
  • 손수학 (한양대학교 공학대학원 보석학과) ;
  • 장윤득 (경북대학교 자연과학대학 지질학과)
  • Kim, Sung Jae (Dept. of Gemology, The Graduate School of Engineering, Hanyang University) ;
  • Shin, Dong Wook (Dept. of Gemology, The Graduate School of Engineering, Hanyang University) ;
  • Shon, Shoo Hack (Dept. of Gemology, The Graduate School of Engineering, Hanyang University) ;
  • Jang, Yun Deuk (Department of Geology, Kyungpook National University)
  • 투고 : 2015.03.02
  • 심사 : 2015.03.27
  • 발행 : 2015.03.31

초록

파키스탄 북부 Gilgit-Baltistan에서 산출된 천연 아쿠아머린의 다른 산지와 구별되는 내포물과 분광학적 특성을 표준 보석 감정 장비와 XRF, ICP-AES, XRD, FT-IR, Raman 등을 이용해 분석한 결과 보석 광물학적 특성에 있어서는 페그마타이트 환경에서 생성되는 Mn과 결합한 탄탈라이트 결정내포물이 특징적으로 관찰되었고 분광학적 방법에 있어서는 채널 속 $H_2O$ 타입이 파키스탄과 함께 아쿠아머린 산지로 유명한 베트남, 브라질, 중국, 마다가스카르 지역의 $H_2O$ 타입-II에 비해서 타입-I에 더 근접했으며 알칼리 이온과 관련이 있는 타입-II도 다소 관찰되었다. 또한 $Na_2O$ 함량을 성분 분석한 결과 0.137 wt%로써 이 결과는 Schmetzer와 Kiefert (1990)의 에머럴드 연구에서 제안한 FT-IR 특정 피크들의 상대적 강도에 의한 알칼리 이온의 함량에 따른 분류표를 기준했을 때 $Na_2O$ 함량이 0.06-0.4 wt%이었으므로 이 $Na_2O$ 함량은 그 분류표에 없는 함량으로 그룹 II와 그룹 III 사이에 해당되므로 채널 속 Na는 주로 $H_2O-Na-H_2O$의 배열 형태를 가진 것으로 예측된다.

We applied gemological analytical approaches on Aquamarine from the Gilgit-Baltistan of Northern Areas, Pakistan. The standard gemological testing indicates that they are consistent with general characteristics of natural aquamarines. We have identified the inclusions of Tantalite-Mn by Raman analysis. It indicates that they occurs in association with the veins of Be-rich coarse pegmatite. And the results of chemical analyses, infrared absorption spectroscopy and Raman spectroscopy indicate that $H_2O$ molecules in channel mostly exist in Type-I and a little Type-II with low alkali ion. The comparison of relative peak intensity of FT-IR analysis can be used for prediction of $Na_2O$ content within not only emerald but also aquamarine.

키워드

참고문헌

  1. Wood, D.L. and Nassau, K. (1967) Infrared spectra of foreign molecules in beryl. Journal of Chemical Physics, 47, 2220-2228. https://doi.org/10.1063/1.1703295
  2. Ilaria A., Alessandro P., and Loredana P. (2008) Aquamarine, Maxixe-Type beryl, and hydrothermal synthetic blue beryl: analyses and identification. Gems & Gemology, Vol. 44, No. 3, pp. 214-226. https://doi.org/10.5741/GEMS.44.3.214
  3. Moon, S.S., Bak. M.G., Lee. Y.M., and Jo. J.H. (2000) Introduction to Spectroscopy, Freedom Academy, Seoul, 558p.
  4. Aines R.D. and Rossman G.R. (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryl. American Mineralogist, Vol. 69, No. 3/4, pp. 319-327.
  5. Andersson, L.O. (2011) A Russian Maxixe beryl?. The Journal of Gemmology, Vol. 32, No. 5-8.
  6. Aurisicchio, C., Grubessi, O., and zecchini, P. (1994) Infrared spectroscopy and crystal chemistry of the beryl group. Canadian Mineralogist, 32, 55-68.
  7. Belov, N.V. and Matveeva, R.G. (1950) Determination of the parameters of beryl by the method of partial projection. Dokl. Akad. Nauk. SSSR, 73, 299-302.
  8. Bernard C., Philippe D., Odile B., and Cristina P.C. (1996) Channel occupancy in an alkali-poor beryl from Serra Branca (Goias, Brazil): Spectroscopic characterization. American Mineralogist, 81, 395-403. https://doi.org/10.2138/am-1996-3-414
  9. Bragg, W.L. and Claringbull, G.F. (1965) Crystal structures of minerals, Bell and Sons Ltd, London, 213p.
  10. Bragg, W.L. and West, J. (1926) The structure of beryl. Proc, Roy, Soc, London, A111, 691-714.
  11. Damon, P.E. and Kulp, J.L. (1958) Excess helium and argon in beryl and other minerals. American Mineralogist, 43, 433-459.
  12. David B. (1997-2014) The Database The RRUFF TM Project. robisons@email.arizona.edu.
  13. Gibbs, G.V., Breck, D.W., and Meagher, E.P. (1968) Structural refinements of hydrous and anhydrous synthetic beryl. $Al_{2}(Be_{3}Si_{6})O_{18}$ and emerald $Al_{1.9}Cr_{0.1}(Be_{3}Si_{6})O_{18}$. Lithos, 1, 275-285. https://doi.org/10.1016/S0024-4937(68)80044-1
  14. Giuliani, G. et al. (2002) Emeralds of the World. extraLapis English No. 2: The Legendary Green Beryl, 100p.
  15. Goldman D.S., Rossman G.R., and Parkin K.M. (1978) Channel constituents in beryl. Physics and Chemistry of Minerals, Vol. 3, No. 3, pp. 225-235. https://doi.org/10.1007/BF00633572
  16. Hassan M.A., Shah M.T., Tahseenullah K., and Amanullah L. (2011) Field features and petrography used as indicators for the classification of Shigar valley pegmatites, Gilgit-Baltistan region of Pakistan. Journal of Himalayan Earth Sciences, 44(2), 1-7.
  17. Huong T.T. and Tobias H. (2010) On some controversially- discussed Raman and IR bands of beryl VNU Journal of Science. Earth Sciences, 26, 32-41.
  18. Huong T.T., Wolfgang H., Tobias H., and Nguyen N.K. (2011) Aquamarine from Thethuong Xuan district. Thanh Hoa Province, Vietnam, Gems & Gemology, Vol. 7, No. 1, pp. 42-48.
  19. Ilaria A., Alessandro P., and Loredana P. (2008) Aquamarine, Maxixe-Type beryl, and hydrothermal synthetic blue beryl: analyses and identification. Gems & Gemology, Vol. 44, No. 3, pp. 214-226. https://doi.org/10.5741/GEMS.44.3.214
  20. Kodaira, K., Iwase, Y., Tsunashina, A., and Matsushita, T. (1982) High pressure hydrothermal synthesis of beryl crystals. Journal of crystal growth, 60, 172-174. https://doi.org/10.1016/0022-0248(82)90193-2
  21. Kristy L.B. and David R.L. (2010) Aquamarine beryl from Zealand Station, Canada: a mineralogical and stable isotope study. Journal of Geosciences, 55, 57-67.
  22. Łodzinski, M., Sitarz, M., Stec, K., Kozanecki, M., Fojud, Z. and Jurga, S. (2005) ICP, IR, Raman, NMR investigations of beryls from pegmatites of the Sudety Mts. Journal of Molecular Structure, 744-747, 1005-1015. https://doi.org/10.1016/j.molstruc.2004.12.042
  23. Muhammad H.A., Mohammad T.S., Tahseenullah K., Mamoru M., Muhammad A., and Humaira D. (2013) Shigar valley gemstones their chemical composition and origin, Skardu, Gilgit-Baltistan, Pakistan, Arab J Geosci DOI 10.1007/s12517-013-1045-8.
  24. Nakamoto, K. (1963) Infrared spectra of inorganic and coordination compounds. Wiley, New York, 328p.
  25. Nassau, K. (2001) The physics and chemistry of color. John Wiley & Sons. New York, 481p.
  26. Nesse, W. (2004) Optical mineralogy. Oxford university press. New York, 348p.
  27. Schmetzer, K. (1989) Types of water in natural and synthetic emerald. Neues Jahrbuch flur Mineralogie Monatshefte, I, 15-26.
  28. Schmetzer, K. and Kiefer, L. (1990) Water in Beryl-a contribution to the separability of natural and synthetic emeralds by infrared spectroscopy. Journal of Gemology, 22, 215-223. https://doi.org/10.15506/JoG.1990.22.4.215
  29. Wood D.L. and Nassau K. (1968a) An examination of red beryl from UTAH. The American mineralogist, Vol, 53. 801-806.
  30. Wood, D.L. and Nassau, K. (1968b) The characterization of beryl and emerald by visible and infrared absorption spectroscopy. American Mineralogist, 53. 777-800.