DOI QR코드

DOI QR Code

현무암과 포놀라이트 비정질 규산염의 원자구조 차이에 대한 고상핵자기 공명 분광분석 연구

A Solid-state 27Al MAS and 3QMAS NMR Study of Basaltic and Phonolitic Silicate Glasses

  • 박선영 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Park, Sun Young (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 투고 : 2015.03.05
  • 심사 : 2015.03.25
  • 발행 : 2015.03.31

초록

현무암과 포놀라이트 조성을 가진 마그마는 분화 양상과 거시적 물성에서 많은 차이를 보이나 이에 대한 원자구조 단위의 근본적인 원인은 아직 명확히 밝혀지지 않았다. 본 연구에서는 일차원과 고해상도 이차원 고상 핵자기공명 분광분석(Nuclear Magnetic Resonance, NMR)을 이용하여 현무암질 마그마의 모델인 투휘석과 아노르다이트 공융점 조성을 가진 비정질 규산염과 포놀라이트 조성의 비정질 규산염의 Al 주변 원자 구조를 관찰하였다. $^{27}Al$ MAS NMR 실험 결과 두 조성 모두 Al 피크가 지배적인 것을 보여주며 현무암 조성의 비정질 규산염의 피크 반치폭이 포놀라이트 조성보다 약 2배 더 넓은 것으로 관찰된다. 이것은 현무암질 조성에서의 Al 주변의 위상 무질서도가 포놀라이트 조성보다 높다는 것을 의미한다. $^{27}Al$ 3QMAS NMR 실험 결과 Al과 Al이 구별되어 관찰되며 현무암 조성의 비정질 규산염에서 포놀라이트 조성에는 관찰되지 않는 Al이 약 3.3% 관찰된다. 이는 현무암질 마그마가 포놀라이트 마그마에 비해 Al 주변의 배열 무질서도가 더 큰 것을 의미한다. 사중극자 상호관계를 설명하는 계수 또한 현무암 조성의 비정질 규산염이 포놀라이트 조성의 비정질 규산염에 비해 큰 값을 나타내며 이것 또한 Al 주변의 위상 무질서도가 더 큰 것을 확증해준다. 본 논문에서 규명한 현무암과 포놀라이트 조성의 비정질 규산염의 원자 구조 차이는 점성도와 같은 조성에 따른 마그마의 물성 차이에 대한 미시적 기원을 제시한다.

While the macroscopic properties and eruption style of basaltic and phonolitic melts are different, the microscopic origins including atomic structures are not well understood. Here we report the atomic structure differences of glass in diopside-anorthite eutectic composition (basaltic glass) and phonolitic glass using high-resolution 1D and 2D solid-state Nuclear Magnetic Resonance (NMR). The $^{27}Al$ MAS NMR spectra for basaltic glass and phonolitic glass show that the full width at half maximum (FWHM) of Al for basaltic glass is about twice than phonolitic glass, suggesting the topological disorder of basaltic magma is larger than that of phonolitic magma. The $^{27}Al$ 3QMAS NMR spectra for basaltic glass and phonolite glass show much improved resolution than the 1D MAS NMR, resolving Al and Al. Approximately 3.3% of Al is observed for basaltic glass, demonstrating the configurational disorder of basaltic magma is larger than phonolitic magma. This result confirms that the topological disorder of Al in basaltic glass is larger than that of phonolitic glass. The observed structural differences between basaltic glass and phonolitic glass can provide an atomistic origin for change of the macroscopic properties with composition including viscosity.

키워드

참고문헌

  1. Arevalo Jr, R., McDonough, W.F., and Luong, M. (2009) The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters 278, 361-369. https://doi.org/10.1016/j.epsl.2008.12.023
  2. Baltisberger, J.H., Xu, Z., Stebbins, J.F., Wang, S.H., and Pines, A. (1996) Triple-quantum two-dimensional $^{27}Al$ magic-angle spinning nuclear magnetic resonance spectroscopic study of aluminosilicate and aluminate crystals and glasses. Journal of American Chemical Society 118, 7209-7214. https://doi.org/10.1021/ja9606586
  3. Bottinga, Y. and Weill, D.R., P. (1982) Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions. Geochimica et Cosmochimica Acta 46, 909-919. https://doi.org/10.1016/0016-7037(82)90047-3
  4. Bottinga, Y. and Weill, D.R., P. (1983) Calculation of the density and thermal expansion coefficient of silicate liquids. Bull. Mineral. 106, 129-138.
  5. Brenna, M., Price, R., Cronin, S.J., Smith, I.E.M., Sohn, Y.K., Kim, G.B., and Maas, R. (2014) Final Magma Storage Depth Modulation of Explosivity and Trachyte-Phonolite Genesis at an Intraplate Volcano: a Case Study from Ulleung Island, South Korea. Journal of Petrology 55, 709-747. https://doi.org/10.1093/petrology/egu004
  6. Frydman, L. and Harwood, J.S. (1995) Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. Journal of American Chemical Society 117, 5367-5368. https://doi.org/10.1021/ja00124a023
  7. Giordano, D. and Dingwell, D.B. (2003) Non-Arrhenian multicomponent melt viscosity: a model. Earth and Planetary Science Letters 208, 337-349. https://doi.org/10.1016/S0012-821X(03)00042-6
  8. Giordano, D. and Dingwell, D.B. (2004) Erratum to "Non Arrhenian multicomponent melt viscosity: a model". Earth and Planetary Science Letters 221, 449. https://doi.org/10.1016/S0012-821X(04)00097-4
  9. Giordano, D., Romano, C., Papale, P., and Dingwell, D.B. (2004) The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chemical Geology 213, 49-61. https://doi.org/10.1016/j.chemgeo.2004.08.032
  10. Kelsey, K.E., Stebbins, J.F., Singer, D.M., Brown, G.E., Mosenfelder, J.L., and Asimow, P.D. (2009) Cation field strength effects on high pressure aluminosilicate glass structure: Multinuclear NMR and La XAFS results. Geochimica et Cosmochimica Acta 73, 3914-3933. https://doi.org/10.1016/j.gca.2009.03.040
  11. Kushiro, I. (2001) Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annual Review of Earth and Planetary Sciences 29, 71-107. https://doi.org/10.1146/annurev.earth.29.1.71
  12. Lee, S.K. (2011) Simplicity in melt densification in multicomponent magmatic reservoirs in Earth's interior revealed by multinuclear magnetic resonance. Proceedings of the National Academy of Sciences of the United States of America 108, 6847-6852.
  13. Lee, S.K., Cody, G.D., and Mysen, B.O. (2005) Structure and the extent of disorder in quaternary (Ca-Mg and Ca-Na) aluminosilicate glasses and melts. American Mineralogist 90, 1393-1401. https://doi.org/10.2138/am.2005.1843
  14. Lee, S.K. and Stebbins, J.F. (1999) The degree of aluminum avoidance in aluminosilicate glasses. American Mineralogist 84, 937-945. https://doi.org/10.2138/am-1999-5-630
  15. Lee, S.K. and Stebbins, J.F. (2000) The structure of aluminosilicate glasses: High-resolution O-17 and Al-27 MAS and 3QMAS. Journal of Physical Chemistry B 104, 4091-4100. https://doi.org/10.1021/jp994273w
  16. Lee, S.K. and Sung, S. (2008) The effect of network- modifying cations on the structure and disorder in peralkaline Ca-Na aluminosilicate glasses: O-17 3QMAS NMR study. Chemical Geology 256, 326-333. https://doi.org/10.1016/j.chemgeo.2008.07.019
  17. McDonough, W.F. and Sun, S.S. (1995) The composition of the Earth. Chemical Geology 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  18. Mysen, B.O. and Richet, P. (2005) Silicate glasses and melts: Properties and structure. Elsevier, Amsterdam.
  19. Panter, K.S., Kyle, P.R., and Smellie, J.L. (1997) Petrogenesis of a Phonolite-Trachyte Succession at Mount Sidley, Marie Byrd Land, Antarctica. Journal of Petrology 38, 1225-1253. https://doi.org/10.1093/petroj/38.9.1225
  20. Park, S.Y. and Lee, S.K. (2009) Probing Atomic Structure of Quarternary Aluminosilicate Glasses using Solid-state NMR. Journal of the Mineralogical Society of Korea 22, 343-352.
  21. Park, S.Y. and Lee, S.K. (2012) Structure and disorder in basaltic glasses and melts: Insights from high-resolution solid-state NMR study of glasses in diopside-Ca-tschermakite join and diopside-anorthite eutectic composition. Geochimica et Cosmochimica Acta 80, 125-142. https://doi.org/10.1016/j.gca.2011.12.002
  22. Park, S.Y. and Lee, S.K. (2014) High-resolution solid- state NMR study of the effect of composition on network connectivity and structural disorder in multi-component glasses in the diopside and jadeite join: Implications for structure of andesitic melts. Geochimica et Cosmochimica Acta 147, 26-42. https://doi.org/10.1016/j.gca.2014.10.019
  23. Presnall, D.C., Gudfinnsson, G.H., and Walter, M.J. (2002) Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochimica et Cosmochimica Acta 66, PII S0016-7037(0002)00890-00896.
  24. Stebbins, J.F., Dubinsky, E.V., Kanehashi, K., and Kelsey, K.E. (2008) Temperature effects on non-bridging oxygen and aluminum coordination number in calcium aluminosilicate glasses and melts. Geochimica et Cosmochimica Acta 72, 910-925. https://doi.org/10.1016/j.gca.2007.11.018
  25. Thompson, G., Smith, I., and Malpas, J. (2001) Origin of oceanic phonolites by crystal fractionation and the problem of the Daly gap: an example from Rarotonga. Contribution Mineralogy Petrology 142, 336-346. https://doi.org/10.1007/s004100100294
  26. Winter, J.D. (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, New Jersey.

피인용 문헌

  1. Effect of Boron Content on Atomic Structure of Boron-bearing Multicomponent Oxide Glasses: A View from Solid-state NMR vol.29, pp.3, 2016, https://doi.org/10.9727/jmsk.2016.29.3.155