과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China (NSFC)
참고문헌
- Acar, M.H. (2007), "Evaluation of creep coefficient on concrete-filled steel tubular columns", Indian J. Eng. Mater. Sci., 14(4), 295-302.
- ACI Committee 209 (1992), Prediction of creep, shrinkage and temperature effect in concrete structure (209R-92).
- Bazant, Z.P. and Baweja, S. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3", Mater. Struct., 28(180), 357-365. https://doi.org/10.1007/BF02473152
- Bradford, M.A., Pi, Y.L. and Qu, W.L. (2011), "Time-dependent in-plane behavior and buckling of concrete-filled steel tubular arches", Eng. Struct., 33(5), 1781-1795. https://doi.org/10.1016/j.engstruct.2011.02.018
- CEB-FIP (1978), CEB-FIP mode code for concrete structures.
- CEB-FIP (1990), CEB-FIP mode code for concrete structures.
- Chen, Z.H. and Yuan, J.A. (2008), "Creep experimental test and analysis of high-performance concrete in bridge", J. Central South Univ. Technol., 15(1), 577-581. https://doi.org/10.1007/s11771-008-0425-9
- Gardner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal-strength concrete", ACI Mater. J., 98(2), 159-167.
- Kim, Y.H., Trejo, D., Hueste, M.B.D. and Kim, J.J. (2011), "Experimental study on creep and durability of high-early-strength self-consolidating concrete for precast elements", ACI Mater. J., 108(2), 128-138.
- Ma, Y.S. and Wang, Y.F. (2012), "Creep of high strength concrete filled steel tube columns", Thin-Wall. Struct., 53, 91-98. https://doi.org/10.1016/j.tws.2011.12.012
- Ma, Y.S., Wang, Y.F. and Mao, Z.K. (2011), "Creep effects on dynamic behavior of concrete filled steel tube arch bridge", Struct. Eng. Mech., Int. J., 37(3), 321-330. https://doi.org/10.12989/sem.2011.37.3.321
- Mazloom, M. (2008), "Estimating long-term creep and shrinkage of high-strength concrete", Cement Concrete Compos., 30(4), 316-326. https://doi.org/10.1016/j.cemconcomp.2007.09.006
- Pan, Z.F., Lu, Z.T. and Fu, C.C. (2011), "Experimental study on creep and shrinkage of high-strength plain concrete and reinforced concrete", Adv. Struct. Eng., 14(2), 235-247. https://doi.org/10.1260/1369-4332.14.2.235
- Persson, B. (2001), "Correlating laboratory and field tests of creep in high-performance concrete", Cement Concrete Compos., 31(3), 389-395. https://doi.org/10.1016/S0008-8846(01)00455-0
- Shao, X.D., Peng, J.X., Li, L.F. and Hu, J. (2010), "Time-dependent behavior of concrete-filled steel tubular arch bridge", J. Bridge Eng., 15(1), 98-107. https://doi.org/10.1061/(ASCE)1084-0702(2010)15:1(98)
- Shrestha, K.M., Chen, B.C. and Chen, Y.F. (2011), "State of the art of creep of concrete filled steel tubular arches", KSCE J. Civil Eng., 15(1), 145-151. https://doi.org/10.1007/s12205-011-0734-7
- Torres, L., Mias, C., Turon, A. and Baena, M. (2012), "A rational method to predict long-term deflections of FRP reinforced concrete members", Eng. Struct., 40, 230-239. https://doi.org/10.1016/j.engstruct.2012.02.021
- Wang, Y.Y., Geng, Y., Ranzi, G. and Zhang, S.M. (2011), "Time-dependent behavior of expansive concrete-filled steel tubular columns", J. Construct. Steel Res., 67(3), 471-483. https://doi.org/10.1016/j.jcsr.2010.09.007
- Yang, Y.F., Han, L.H. and Wu, X. (2008), "Concrete shrinkage and creep in recycled aggregate concrete-filled steel tubes", Adv. Struct. Eng., 11(4), 383-396. https://doi.org/10.1260/136943308785836772
피인용 문헌
- Numerical study of a new constructive sequence for movable scaffolding system (MSS) application vol.4, pp.3, 2015, https://doi.org/10.12989/acc.2016.4.3.173
- Monitoring degradation in concrete filled steel tubular sections using guided waves vol.19, pp.4, 2015, https://doi.org/10.12989/sss.2017.19.4.371
- In-situ test and dynamic response of a double-deck tied-arch bridge vol.27, pp.2, 2015, https://doi.org/10.12989/scs.2018.27.2.161
- Experimental study on creep behavior of fly ash concrete filled steel tube circular arches vol.27, pp.2, 2015, https://doi.org/10.12989/scs.2018.27.2.185
- Time-dependent Behaviour Analysis of Long-span Concrete Arch Bridge vol.14, pp.2, 2015, https://doi.org/10.7250/bjrbe.2019-14.441
- Dynamic behavior of hybrid framed arch railway bridge under moving trains vol.15, pp.8, 2015, https://doi.org/10.1080/15732479.2019.1594314
- Numerical study of concrete-encased CFST under preload followed by sustained service load vol.35, pp.1, 2015, https://doi.org/10.12989/scs.2020.35.1.093
- Behaviour of high strength concrete-filled short steel tubes under sustained loading vol.39, pp.2, 2015, https://doi.org/10.12989/scs.2021.39.2.159
- Experimental study and application of manufactured sand self-compacting concrete in concrete-filled-steel-tube arch bridge: A case study vol.15, pp.None, 2015, https://doi.org/10.1016/j.cscm.2021.e00718