DOI QR코드

DOI QR Code

지하철 우회계수 산정을 통한 수도권 지하철의 거리 효율 평가 모형

A Method to Evaluate Distance Efficiency of Seoul Metropolitan Subway by Estimating Subway Detour Factor

  • 이재민 (한양대학교 교통.물류공학과) ;
  • 김남석 (한양대학교 교통.물류공학과)
  • LEE, Jae Min (Department of Transportation and Logistics Engineering, Hanyang University) ;
  • KIM, Nam Seok (Department of Transportation and Logistics Engineering, Hanyang University)
  • 투고 : 2014.12.05
  • 심사 : 2015.04.13
  • 발행 : 2015.06.30

초록

대도시권에서 지하철의 우회는 승용차 통행에 비해 지하철의 경쟁력을 떨어뜨리는 요인으로 지적되어 왔다. 그러나 새로운 지하철 시스템을 계획하거나, 기존의 운행 노선을 개선할 때 다른 가치들 (영업이익, 수요, 노선의 균등 분배 등)과의 관계에서 우회에 대한 최소기준 정도만 존재할 뿐 다른 가치들과의 가중에 대한 기준이 모호한 실정이다. 이 연구는 우회의 개념을 사용하여 수도권 지하철의 거리 효율 평가 모형을 다루고 있다. 연구의 목적은 지금까지의 우회율과 관련된 선행연구들에 대해 요약을 하고 새로운 거리 효율 평가 모형을 만들어보며, 이 모형을 수도권 지하철 3호선에 적용하는데 있다. 주요 결과는 두 가지로 나눠볼 수 있다. 첫째, 가장 크게 우회하는 OD는 '대치'역부터 '압구정'역까지였으며 우회계수는 1.93으로 나타났다. 이는 도로의 네트워크보다 약 1.93배 더 길게 우회하는 것을 의미한다. 한편, 수도권 지하철 3호선을 전체적으로 분석을 해본 결과, 도로의 네트워크보다 평균적으로 약 20% 더 우회하는 것으로 나타났다.

Detour of metro (subway) in metropolitan area has been regarded as one of inherent elements that make entire metro system less competitive than passenger cars. However, factors affecting detour of metro line is not specified clearly when a new subway system is planned or an existing system is improved. Previous detour-related studies was reviewed for developing 'distance efficeincy evaluation model' for metro as well as its counterpart (i.e. road). Metro line 3 (orange line) of Seoul metropolitan area was applied as a case study. As a results, the most detoured OD segment is Daechi - Apgujeong and its detour factor is 1.93 which means that the distance of the metro is 1.93 times longer distance compared to the distance of the road. The metro line 3 has averagely 20% longer distance compared to road for the identical O/D pairs.

키워드

참고문헌

  1. Abler R., Adams J. S., Gould P., (1971), Spatial Organization: the Geographer's View of the World, New Jersey: Prentice-Hall.
  2. Ballou R. H., Rahardja H., Sakai N. (2002), Selected Country Circuity Factors for Road Travel Distance Estimation, Transportation Research Part A, 36(9), Transportation Research, 843-848. https://doi.org/10.1016/S0965-8564(01)00044-1
  3. Campbell J. F. (1990), Freight Consolidation and Routing with Transportation Economies of Scale, Transportation Research Part B: Methodological, 24(5), Transportation Research, 345-361. https://doi.org/10.1016/0191-2615(90)90008-M
  4. Cassi L., Plunket A. (2012), Research Collaboration in Co-inventor Networks: Combining Closure, Bridging and Proximities, MPRA paper No. 39481, posted 17, Munich Personal RePEc Archive, 42.
  5. Derrible S., Kennedy C. (2009), A Network Analysis of Subway Systems in the World Using Updated Graph Theory, Transportation Research Record: Journal of the Transportation Research Board, 2112, Transportation Research Board, 17-25. https://doi.org/10.3141/2112-03
  6. Derrible S., Kennedy C. (2010), Evaluating, Comparing, and Improving Metro Networks, Transportation Research Record: Journal of the Transportation Research Board, 2146, Transportation Research Board, 43-51. https://doi.org/10.3141/2146-06
  7. Giacomin D. J., Levinson D. M. (2014), Road Network Circuity in Metropolitan Areas, TRB 93rd Annual Meeting Compendium of Papers, Report/Paper Numbers: 14-0955, Transportation Research Board, 1-19.
  8. Gyeonggi Research Institute (2010), A Study on the Improvement of the Congested Bus Ridership During Rush Hour (광역버스 차내 혼잡도 개선방안)
  9. Han J. S. (2010), Geography of Transportation (교통지리학의 이해), Hanul Publishing Company, 279.
  10. Kim H. C. (1989), Analysis of Spatial Population Distribution and Network Accessibility in Urban Areas, J. Korean Soc. Transp., 7(1), Korean Society of Transportation, 43-55.
  11. Lam T N., Schuler H J. (1981), Public Transit Connectivity, California Department of Transportation.
  12. Lam T. N., Schuler H. J. (1982), Connectivity Index for Systemwide Transit Route and Schedule Performance, Transportation Research Record, 854, Transportation Research Board, 17-23.
  13. Levinson D., El-Geneidy A. (2009), The Minimum Circuity Frontier and the Journey to Work, Regional Science and Urban Economics, 39(6), Regional Science and Urban Economics, 732-738. https://doi.org/10.1016/j.regsciurbeco.2009.07.003
  14. Miller H. J., Shaw S. L. (2001), Geographic Information Systems for Transportation: Principles and Applications, Oxford University Press.
  15. Ministry of Government Legislation (2014), Sustainable Transportation Logistics Development Act (지속가능 교통물류발전기본법)
  16. Parthasarathi P., Hochmair H., Levinson D. (2009), The Influence of Network Structure on Travel Distance.
  17. Seoul Development Institute (2008), Network Reshuffle for Seoul Metro (도시철도 노선개편 실행방안).
  18. Takashi O. (1977), Basis of quantitative geography (計量地理學の基礎), Daimei-do (大明堂), Kyoto, Japan.
  19. The Seoul Institute (2014), Evaluation of the Quality of Public Transport Commuting in Seoul (대중교통 서비스 개선을 위한 서울시 출근통행의 질 평가).

피인용 문헌

  1. Comparisons of Estimated Circuity Factor of Forest Roads with Different Vertical Heights in Mountainous Areas, Republic of Korea vol.10, pp.12, 2015, https://doi.org/10.3390/f10121147