References
-
J.T. Song, "The Development of SiC Photo-electrodes for Electrochemical Water-splitting and
$CO_2$ Reduction," in Ph.D thesis, Tokyo Institute of Technology, 2015. - A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 37-38 (1972). https://doi.org/10.1038/238037a0
- H.S. Jeon, J.H. Koh, S.J. Park, M.S. Jee, D. Ko, Y.J. Hwang, and B.K. Min, "A Monolithic and Standalone Solar-fuel Device Having Comparable Efficiency to Photosynthesis in Nature," J. Mater. Chem. A, 3 5835-42 (2015). https://doi.org/10.1039/C4TA06495J
- J.H. Park, S. Kim, and A.J. Bard, "Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting," Nano. Lett., 6 24-28 (2006). https://doi.org/10.1021/nl051807y
-
T.W. Kim and K. Choi. "Nanoporous
$BiVO_4$ Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting," Science, 343 990-94 (2014). https://doi.org/10.1126/science.1246913 -
D.V. Esposito, I. Levin, T.P. Moffat, and A.A. Talin, "
$H_2$ Evolution at Si-based metal-insulator-semiconductor Photoelectrodes Enhanced by Inversion Chnnel Charge Collection, and H spillover," Nat. Mater., 12 562-68 (2013). https://doi.org/10.1038/nmat3626 - M.H. Lee, K. Takei, J. Zhang, Y. Chen, J. Nah, T.S. Matthews, Y. Chueh, J.W. Ager, and A. Javey, "p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production," Angew. Chem. Int. Ed., 51 10760-64 (2012). https://doi.org/10.1002/anie.201203174
-
E.E. Barton, D.M. Rampulla, and A.B. Bocarsly, "Selective Solar-Driven Reduction of
$CO_2$ to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell," J. Am. Chem. Soc., 130 6342-44 (2008). https://doi.org/10.1021/ja0776327 - K. Fujii and K. Ohkawa, "Hydrogen Generation from Aqueous Water Using n-GaN by Photoassisted Electrolysis," Phys. Stat. Sol., 3 2270-73 (2006). https://doi.org/10.1002/pssc.200565171
- M.J. Kenney, M. Gong, Y. Li, J.Z. Wu, J. Feng, M. Lanza, and H. Dai, "High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation," Science, 342 836-39 (2013). https://doi.org/10.1126/science.1241327
- Y.W. Chen, J.D. Prange, S. Duhnen, Y. Park, M. Gunji, C.E.D. Chidsey, and P.C. McIntyre, "Atomic Layer-deposited Tunnel Oxide Stabilizes Silicon Photoanodes for Water Oxidation," Nat. Mater., 10 539-44 (2011). https://doi.org/10.1038/nmat3047
-
S. Hu, M.R. Shaner, J.A. Beardslee, M. Lichterman, B.S. Brunschwig, and N.S. Lewis, "Amorphous
$TiO_2$ Coatings Stabilize Si, GaAs, and GaP Photoanodes for Efficient Water oxidation," Science, 344 1005-09 (2014). https://doi.org/10.1126/science.1251428 - S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M.D. Kelzenberg, M.G. Walter, J.R. McKone, B.S. Brunschwig, H.A. Atwater, and N.S. Lewis, "Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays," J. Am. Chem. Soc., 133 1216-19 (2011). https://doi.org/10.1021/ja108801m
-
J. Oh, T.G. Deutsch, H. Yuan, and H.M. Branz, "Nanoporous Black Silicon Photocathode for
$H_2$ Production by Photoelectrochemical Water Splitting," Energy Environ. Sci., 4 1690-94 (2011). https://doi.org/10.1039/c1ee01124c - R. Hinogami, Y. Nakamura, S. Yae, and Y. Nakato, "An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles," J Phys. Chem. B, 102 974-80 (1998). https://doi.org/10.1021/jp972663h
-
S.K. Choi, U. Kang, S. Lee, D.J. Ham, S.M. Ji, and H. Park, "Sn-Coupled p-Si Nanowire Arrays for Solar Formate Production from
$CO_2$ ," Adv. Energy Mater., 4 1301614 (2014). https://doi.org/10.1002/aenm.201301614 -
S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, "Photoinduced
$CO_2$ Reduction with GaN Electrode in Aqueous System," Appl. Phys. Express, 4 117101 (2011). https://doi.org/10.1143/APEX.4.117101 -
S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, "
$CO_2$ Conversion with Light and Water by GaN Photoelectrode," Jpn. J. Appl. Phys., 51 02BP07 (2012). https://doi.org/10.7567/JJAP.51.02BP07 -
H. Hashiba, S. Yotsuhashi, M. Deguchi, Y. Yamada, and K. Ohkawa, "Selectivity Control of
$CO_2$ Reduction in an Inorganic Artificial Photosynthesis System," Appl. Phys. Express, 6 097102 (2013). https://doi.org/10.7567/APEX.6.097102 - L.C. Seitz, Z. Chen, A.J. Forman, B.A. Pinaud, J.D. Benck, and T.F. Jaramillo, "Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research," ChemSusChem., 7 1372-85 (2014). https://doi.org/10.1002/cssc.201301030
- J.T. Song, H. Mashiko, M. Kamiya, Y. Nakamine, A. Ohtomo, T. Iwasaki, and M. Hatano, "Improved Visible Light Driven Photoelectrochemical Properties of 3C-SiC Semiconductor with Pt Nanoparticles for Hydrogen Generation," Appl. Phys. Lett., 103 213901 (2013). https://doi.org/10.1063/1.4832333
- J.T. Song, T. Iwasaki, and M. Hatano, "Pt Co-catalyst Effect on Photoelectrochemical Properties of 3CSiC Photo-anode," Jpn. J. Appl. Phys., 53 05FZ04 (2014). https://doi.org/10.7567/JJAP.53.05FZ04
- T. Yasuda, M. Kato, M. Ichimura, and T. Hatayama, "SiC Photoelectrodes for a Self-driven Water-splitting Cell," Appl. Phys. Lett., 101 053902 (2012). https://doi.org/10.1063/1.4740079
-
J.T. Song, T. Iwasaki, and M. Hatano, "Photoelectrochemical
$CO_2$ Reduction on 3C-SiC Photoanode in Aqueous Solution," Jpn. J. Appl. Phys., 54 04DR05 (2015). https://doi.org/10.7567/JJAP.54.04DR05 - M. Kato, T. Yasuda, K. Miyake, M. Ichimura, and T. Hatayama, "Epitaxial p-type SiC as a Self-driven Photocathode for Water Splitting," Int. J. Hydrogen, 39 4845-49 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.049