Browse > Article

태양광-연료 변환을 위한 3C-SiC 반도체 광전극의 연구 및 향후 전망  

Song, Jun-Tae (KAIST Institute for Nanocentury)
O, Ji-Hun (Graduate School of EEWS, KAIST)
Publication Information
Ceramist / v.18, no.2, 2015 , pp. 34-44 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.T. Song, "The Development of SiC Photo-electrodes for Electrochemical Water-splitting and $CO_2$ Reduction," in Ph.D thesis, Tokyo Institute of Technology, 2015.
2 A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 37-38 (1972).   DOI
3 H.S. Jeon, J.H. Koh, S.J. Park, M.S. Jee, D. Ko, Y.J. Hwang, and B.K. Min, "A Monolithic and Standalone Solar-fuel Device Having Comparable Efficiency to Photosynthesis in Nature," J. Mater. Chem. A, 3 5835-42 (2015).   DOI
4 J.H. Park, S. Kim, and A.J. Bard, "Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting," Nano. Lett., 6 24-28 (2006).   DOI
5 T.W. Kim and K. Choi. "Nanoporous $BiVO_4$ Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting," Science, 343 990-94 (2014).   DOI
6 D.V. Esposito, I. Levin, T.P. Moffat, and A.A. Talin, "$H_2$ Evolution at Si-based metal-insulator-semiconductor Photoelectrodes Enhanced by Inversion Chnnel Charge Collection, and H spillover," Nat. Mater., 12 562-68 (2013).   DOI
7 M.H. Lee, K. Takei, J. Zhang, Y. Chen, J. Nah, T.S. Matthews, Y. Chueh, J.W. Ager, and A. Javey, "p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production," Angew. Chem. Int. Ed., 51 10760-64 (2012).   DOI
8 E.E. Barton, D.M. Rampulla, and A.B. Bocarsly, "Selective Solar-Driven Reduction of $CO_2$ to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell," J. Am. Chem. Soc., 130 6342-44 (2008).   DOI
9 K. Fujii and K. Ohkawa, "Hydrogen Generation from Aqueous Water Using n-GaN by Photoassisted Electrolysis," Phys. Stat. Sol., 3 2270-73 (2006).   DOI
10 M.J. Kenney, M. Gong, Y. Li, J.Z. Wu, J. Feng, M. Lanza, and H. Dai, "High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation," Science, 342 836-39 (2013).   DOI
11 Y.W. Chen, J.D. Prange, S. Duhnen, Y. Park, M. Gunji, C.E.D. Chidsey, and P.C. McIntyre, "Atomic Layer-deposited Tunnel Oxide Stabilizes Silicon Photoanodes for Water Oxidation," Nat. Mater., 10 539-44 (2011).   DOI
12 S. Hu, M.R. Shaner, J.A. Beardslee, M. Lichterman, B.S. Brunschwig, and N.S. Lewis, "Amorphous $TiO_2$ Coatings Stabilize Si, GaAs, and GaP Photoanodes for Efficient Water oxidation," Science, 344 1005-09 (2014).   DOI
13 S.K. Choi, U. Kang, S. Lee, D.J. Ham, S.M. Ji, and H. Park, "Sn-Coupled p-Si Nanowire Arrays for Solar Formate Production from $CO_2$," Adv. Energy Mater., 4 1301614 (2014).   DOI
14 S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M.D. Kelzenberg, M.G. Walter, J.R. McKone, B.S. Brunschwig, H.A. Atwater, and N.S. Lewis, "Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays," J. Am. Chem. Soc., 133 1216-19 (2011).   DOI
15 J. Oh, T.G. Deutsch, H. Yuan, and H.M. Branz, "Nanoporous Black Silicon Photocathode for $H_2$ Production by Photoelectrochemical Water Splitting," Energy Environ. Sci., 4 1690-94 (2011).   DOI
16 R. Hinogami, Y. Nakamura, S. Yae, and Y. Nakato, "An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles," J Phys. Chem. B, 102 974-80 (1998).   DOI
17 S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, "Photoinduced $CO_2$ Reduction with GaN Electrode in Aqueous System," Appl. Phys. Express, 4 117101 (2011).   DOI
18 S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, "$CO_2$ Conversion with Light and Water by GaN Photoelectrode," Jpn. J. Appl. Phys., 51 02BP07 (2012).   DOI
19 H. Hashiba, S. Yotsuhashi, M. Deguchi, Y. Yamada, and K. Ohkawa, "Selectivity Control of $CO_2$ Reduction in an Inorganic Artificial Photosynthesis System," Appl. Phys. Express, 6 097102 (2013).   DOI
20 L.C. Seitz, Z. Chen, A.J. Forman, B.A. Pinaud, J.D. Benck, and T.F. Jaramillo, "Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research," ChemSusChem., 7 1372-85 (2014).   DOI
21 J.T. Song, H. Mashiko, M. Kamiya, Y. Nakamine, A. Ohtomo, T. Iwasaki, and M. Hatano, "Improved Visible Light Driven Photoelectrochemical Properties of 3C-SiC Semiconductor with Pt Nanoparticles for Hydrogen Generation," Appl. Phys. Lett., 103 213901 (2013).   DOI
22 J.T. Song, T. Iwasaki, and M. Hatano, "Pt Co-catalyst Effect on Photoelectrochemical Properties of 3CSiC Photo-anode," Jpn. J. Appl. Phys., 53 05FZ04 (2014).   DOI
23 T. Yasuda, M. Kato, M. Ichimura, and T. Hatayama, "SiC Photoelectrodes for a Self-driven Water-splitting Cell," Appl. Phys. Lett., 101 053902 (2012).   DOI
24 J.T. Song, T. Iwasaki, and M. Hatano, "Photoelectrochemical $CO_2$ Reduction on 3C-SiC Photoanode in Aqueous Solution," Jpn. J. Appl. Phys., 54 04DR05 (2015).   DOI
25 M. Kato, T. Yasuda, K. Miyake, M. Ichimura, and T. Hatayama, "Epitaxial p-type SiC as a Self-driven Photocathode for Water Splitting," Int. J. Hydrogen, 39 4845-49 (2014).   DOI