DOI QR코드

DOI QR Code

The synthesis of high purity micro Ag particle using the rapid firing -liquid phase precursor method

RF-LPP법을 이용한 고순도 마이크로 Ag 입자 합성

  • Lim, Byeong-Seok (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Song, Young-Hyun (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, Min-Ji (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Mang, Sung-Ryul (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Yoon, Dae-Ho (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 임병석 (성균관대학교 신소재공학과) ;
  • 송영현 (성균관대학교 신소재공학과) ;
  • 이민지 (성균관대학교 신소재공학과) ;
  • 맹성렬 (성균관대학교 신소재공학과) ;
  • 윤대호 (성균관대학교 신소재공학과)
  • Received : 2015.05.29
  • Accepted : 2015.06.12
  • Published : 2015.06.30

Abstract

To synthesis of high purity micro silver particle, we extracted the silver from the waste by liquid-liquid extraction and used the rapid firing-liquid phase precursor (RF-LPP) method. The silver micro particle was synthesized at $500^{\circ}C$ for 3 hr in air atmosphere by RF-LPP method. As a result of the research, micro silver particle is measured X-ray diffraction (XRD), the main peak is nearly corresponded to the same as JCPDS card (No.87-0719). With using the RF-LPP method, the fine Ag micro particle indicated due to the control of nucleation site and the oxygen contents was decreased by reducing treatment. We expect this research contribute to advance in field of the recycling technology.

본 연구에서는 고순도 균질 마이크로 Ag 입자를 얻기 위하여 용매추출법과 RF-LPP법을 이용하여 Air 분위기에서 $500^{\circ}C$에서 3시간 동안 열처리하여 Ag 입자를 합성하였다. 합성된 마이크로 Ag 입자를 XRD에 의해 비교 분석한 결과 주요 peak들이 JCPDS card(No. 87-0719)와 일치하는 것을 확인하였다. RF-LPP법을 이용함으로써, 핵 생성 싸이트 제어를 통해 균질 마이크로 Ag 입자를 합성하였으며, 환원처리 후 산소의 함유가 줄어드는 것을 확인하였다. 본 연구를 통하여 재활용 기술에 큰 기여를 할 것이라 기대한다.

Keywords

References

  1. D. Wang, Z. Cai, G. Jiang, A. Leung, M.H. Wong and W.K. Wong, "Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility", Chemosphere 60 (2005) 810. https://doi.org/10.1016/j.chemosphere.2005.04.025
  2. W.P. Wan, "Country resource environments, firm capabilities, and corporate diversification strategies", Journal of Management Studies 42 (2005) 161. https://doi.org/10.1111/j.1467-6486.2005.00492.x
  3. S. Park, T.U. Kampen, T. Kachel, P. Bressler, W. Braun and D.R.T. Zahn, "Interaction of metals with an organic semiconductor: Ag and In on PTCDA", App. Surf. Sci. 190 (2002) 376. https://doi.org/10.1016/S0169-4332(01)00892-3
  4. C.A. Mead "Metal-semiconductor surface barriers", Solid-State Electron. 9 (1966) 1023. https://doi.org/10.1016/0038-1101(66)90126-2
  5. J.F. Zhang, Y. Zhou, J.Y. Yoon and J.S. Kim "Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions)", Chem. Soc. Rev. 10 (2011) 3416.
  6. M.M. Hilaali, K. Nakayashiki, C. Khadilkar, R.C. Reedy, A. Rohatgi, A. Shaikh, S. Kim and S. Sridharan, "Effect of Ag particle size in thick-film Ag paste on the electrical and physical properties of screen printed contacts and silicon solar cells", J. Electrochem. Soc. 153 (2006) A5. https://doi.org/10.1149/1.2126579
  7. C. Eggeling, J. Schaffer, C.A. Seidel, J. Korte, G. Brehm, S. Schneider and W. Schrol, "Homogeneity, transport, and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance raman scattering", J. Phys. Chem. A 105 (2001) 3674.
  8. Y.Y. Luo, D.S. Jo, K. Senthil, S. Tezuka, M. Kakihana, K. Toda, T. Masaki and D.H. Yoon, "Synthesis of high-efficient $Ca_2SiO_4$ : $Eu^{2+}$ green emitting phosphor by a liquid phase precursor method", J. Solid State Chem. 189 (2012) 68. https://doi.org/10.1016/j.jssc.2011.11.046