DOI QR코드

DOI QR Code

The effect of various veneering techniques on the marginal fit of zirconia copings

  • Torabi, Kianoosh (Department of Prosthodontics, Faculty of Dentistry, Shiraz University of Medical Sciences) ;
  • Vojdani, Mahroo (Biomaterial Research Center, Department of Prosthodontics, Faculty of Dentistry, Shiraz University of Medical Sciences) ;
  • Giti, Rashin (Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences) ;
  • Taghva, Masumeh (Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences) ;
  • Pardis, Soheil (Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Shiraz University of Medical Sciences)
  • 투고 : 2014.11.26
  • 심사 : 2015.04.13
  • 발행 : 2015.06.30

초록

PURPOSE. This study aimed to evaluate the fit of zirconia ceramics before and after veneering, using 3 different veneering processes (layering, press-over, and CAD-on techniques). MATERIALS AND METHODS. Thirty standardized zirconia CAD/CAM frameworks were constructed and divided into three groups of 10 each. The first group was veneered using the traditional layering technique. Press-over and CAD-on techniques were used to veneer second and third groups. The marginal gap of specimens was measured before and after veneering process at 18 sites on the master die using a digital microscope. Paired t-test was used to evaluate mean marginal gap changes. One-way ANOVA and post hoc tests were also employed for comparison among 3 groups (${\alpha}$=.05). RESULTS. Marginal gap of 3 groups was increased after porcelain veneering. The mean marginal gap values after veneering in the layering group ($63.06{\mu}m$) was higher than press-over ($50.64{\mu}m$) and CAD-on ($51.50{\mu}m$) veneered groups (P<.001). CONCLUSION. Three veneering methods altered the marginal fit of zirconia copings. Conventional layering technique increased the marginal gap of zirconia framework more than pressing and CADon techniques. All ceramic crowns made through three different veneering methods revealed clinically acceptable marginal fit.

키워드

참고문헌

  1. Sadowsky SJ. An overview of treatment considerations for esthetic restorations: a review of the literature. J Prosthet Dent 2006;96:433-42. https://doi.org/10.1016/j.prosdent.2006.09.018
  2. Liu PR. A panorama of dental CAD/CAM restorative systems. Compend Contin Educ Dent 2005;26:507-8.
  3. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28:44-56. https://doi.org/10.4012/dmj.28.44
  4. Bachhav VC, Aras MA. Zirconia-based fixed partial dentures: a clinical review. Quintessence Int 2011;42:173-82.
  5. Contrepois M, Soenen A, Bartala M, Laviole O. Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent 2013;110:447-54. https://doi.org/10.1016/j.prosdent.2013.08.003
  6. Jacobs MS, Windeler AS. An investigation of dental luting cement solubility as a function of the marginal gap. J Prosthet Dent 1991;65:436-42. https://doi.org/10.1016/0022-3913(91)90239-S
  7. Bjorn AL, Bjorn H, Grkovic B. Marginal fit of restorations and its relation to periodontal bone level. II. Crowns. Odontol Revy 1970;21:337-46.
  8. Schwartz NL, Whitsett LD, Berry TG, Stewart JL. Unserviceable crowns and fixed partial dentures: life-span and causes for loss of serviceability. J Am Dent Assoc 1970;81:1395-401. https://doi.org/10.14219/jada.archive.1970.0398
  9. Bergenholtz G, Cox CF, Loesche WJ, Syed SA. Bacterial leakage around dental restorations: its effect on the dental pulp. J Oral Pathol 1982;11:439-50. https://doi.org/10.1111/j.1600-0714.1982.tb00188.x
  10. Heintze SD. Systematic reviews: I. The correlation between laboratory tests on marginal quality and bond strength. II. The correlation between marginal quality and clinical outcome. J Adhes Dent 2007;9:77-106.
  11. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11. https://doi.org/10.1038/sj.bdj.4802708
  12. Euan R, Figueras-Alvarez O, Cabratosa-Termes J, Oliver-Parra R. Marginal adaptation of zirconium dioxide copings: influence of the CAD/CAM system and the finish line design. J Prosthet Dent 2014;112:155-62. https://doi.org/10.1016/j.prosdent.2013.10.012
  13. Holmes JR, Sulik WD, Holland GA, Bayne SC. Marginal fit of castable ceramic crowns. J Prosthet Dent 1992;67:594-9. https://doi.org/10.1016/0022-3913(92)90153-2
  14. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989;62:405-8. https://doi.org/10.1016/0022-3913(89)90170-4
  15. Balkaya MC, Cinar A, Pamuk S. Influence of firing cycles on the margin distortion of 3 all-ceramic crown systems. J Prosthet Dent 2005;93:346-55. https://doi.org/10.1016/j.prosdent.2005.02.003
  16. Luthardt RG, Bornemann G, Lemelson S, Walter MH, Huls A. An innovative method for evaluation of the 3-D internal fit of CAD/CAM crowns fabricated after direct optical versus indirect laser scan digitizing. Int J Prosthodont 2004;17:680-5.
  17. Pelekanos S, Koumanou M, Koutayas SO, Zinelis S, Eliades G. Micro-CT evaluation of the marginal fit of different In-Ceram alumina copings. Eur J Esthet Dent 2009;4:278-92.
  18. Sorensen JA. A standardized method for determination of crown margin fidelity. J Prosthet Dent 1990;64:18-24. https://doi.org/10.1016/0022-3913(90)90147-5
  19. Kanat B, Comlekoglu EM, Dundar-Comlekoglu M, Hakan Sen B, Ozcan M, Ali Gungor M. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs. J Prosthodont 2014;23:445-55. https://doi.org/10.1111/jopr.12130
  20. Wimmer T, Erdelt KJ, Eichberger M, Roos M, Edelhoff D, Stawarczyk B. Influence of abutment model materials on the fracture loads of three-unit fixed dental prostheses. Dent Mater J 2014;33:717-24. https://doi.org/10.4012/dmj.2013-344
  21. Tsalouchou E, Cattell MJ, Knowles JC, Pittayachawan P, McDonald A. Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dent Mater 2008;24:308-18. https://doi.org/10.1016/j.dental.2007.05.011
  22. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings-a new fabrication mode for all-ceramic restorations. Dent Mater 2009;25:121-8. https://doi.org/10.1016/j.dental.2008.04.019
  23. Pera P, Gilodi S, Bassi F, Carossa S. In vitro marginal adaptation of alumina porcelain ceramic crowns. J Prosthet Dent 1994;72:585-90. https://doi.org/10.1016/0022-3913(94)90289-5
  24. Shearer B, Gough MB, Setchell DJ. Influence of marginal configuration and porcelain addition on the fit of In-Ceram crowns. Biomaterials 1996;17:1891-5. https://doi.org/10.1016/0142-9612(95)00302-9
  25. Castellani D, Baccetti T, Clauser C, Bernardini UD. Thermal distortion of different materials in crown construction. J Prosthet Dent 1994;72:360-6. https://doi.org/10.1016/0022-3913(94)90554-1
  26. Pak HS, Han JS, Lee JB, Kim SH, Yang JH. Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns. J Adv Prosthodont 2010;2:33-8. https://doi.org/10.4047/jap.2010.2.2.33
  27. Fahmy NZ. Influence of veneering materials on the marginal fit and fracture resistance of an alumina core system. J Prosthodont 2011;20:45-51. https://doi.org/10.1111/j.1532-849X.2010.00626.x
  28. Kohorst P, Brinkmann H, Dittmer MP, Borchers L, Stiesch M. Influence of the veneering process on the marginal fit of zirconia fixed dental prostheses. J Oral Rehabil 2010;37:283-91. https://doi.org/10.1111/j.1365-2842.2009.02053.x
  29. Sulaiman F, Chai J, Jameson LM, Wozniak WT. A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns. Int J Prosthodont 1997;10:478-84.
  30. Cho SH, Nagy WW, Goodman JT, Solomon E, Koike M. The effect of multiple firings on the marginal integrity of pressable ceramic single crowns. J Prosthet Dent 2012;107:17-23. https://doi.org/10.1016/S0022-3913(12)60011-0
  31. Miura S, Inagaki R, Kasahara S, Yoda M. Fit of zirconia allceramic crowns with different cervical margin designs, before and after porcelain firing and glazing. Dent Mater J 2014;33:484-9. https://doi.org/10.4012/dmj.2013-284
  32. Rosensteil SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. Tooth preparation for All-ceramic restorations. 4th ed. St. Louis; Elsevier; 2006. p. 326.
  33. Alghazzawi TF, Liu PR, Essig ME. The effect of different fabrication steps on the marginal adaptation of two types of glass-infiltrated ceramic crown copings fabricated by CAD/CAM technology. J Prosthodont 2012;21:167-72. https://doi.org/10.1111/j.1532-849X.2011.00803.x
  34. Sorensen JA. A standardized method for determination of crown margin fidelity. J Prosthet Dent 1990;64:18-24. https://doi.org/10.1016/0022-3913(90)90147-5
  35. Ushiwata O, de Moraes JV. Method for marginal measurements of restorations: accessory device for toolmakers microscope. J Prosthet Dent 2000;83:362-6. https://doi.org/10.1016/S0022-3913(00)70141-7
  36. Christensen GJ. Marginal fit of gold inlay castings. J Prosthet Dent 1966;16:297-305. https://doi.org/10.1016/0022-3913(66)90082-5
  37. Euan R, Figueras-Alvarez O, Cabratosa-Termes J, Brufau-de Barbera M, Gomes-Azevedo S. Comparison of the marginal adaptation of zirconium dioxide crowns in preparations with two different finish lines. J Prosthodont 2012;21:291-5. https://doi.org/10.1111/j.1532-849X.2011.00831.x
  38. Kokubo Y, Ohkubo C, Tsumita M, Miyashita A, Vult von Steyern P, Fukushima S. Clinical marginal and internal gaps of Procera AllCeram crowns. J Oral Rehabil 2005;32:526-30. https://doi.org/10.1111/j.1365-2842.2005.01458.x
  39. Lee KB, Park CW, Kim KH, Kwon TY. Marginal and internal fit of all-ceramic crowns fabricated with two different CAD/CAM systems. Dent Mater J 2008;27:422-6. https://doi.org/10.4012/dmj.27.422
  40. Bhowmik H, Parkhedkar R. A comparison of marginal fit of glass infiltrated alumina copings fabricated using two different techniques and the effect of firing cycles over them. J Adv Prosthodont 2011;3:196-203. https://doi.org/10.4047/jap.2011.3.4.196
  41. Weaver JD, Johnson GH, Bales DJ. Marginal adaptation of castable ceramic crowns. J Prosthet Dent 1991;66:747-53. https://doi.org/10.1016/0022-3913(91)90408-O
  42. DeHoff PH, Barrett AA, Lee RB, Anusavice KJ. Thermal compatibility of dental ceramic systems using cylindrical and spherical geometries. Dent Mater 2008;24:744-52. https://doi.org/10.1016/j.dental.2007.08.008
  43. Nielsen JP, Tuccillo JJ. Calculation of interfacial stress in dental porcelain bonded to gold alloy substrate. J Dent Res 1972;51:1043-7. https://doi.org/10.1177/00220345720510040901
  44. Aboushelib MN, Feilzer AJ, de Jager N, Kleverlaan CJ. Prestresses in bilayered all-ceramic restorations. J Biomed Mater Res B Appl Biomater 2008;87:139-45.
  45. Isgro G, Wang H, Kleverlaan CJ, Feilzer AJ. The effects of thermal mismatch and fabrication procedures on the deflection of layered all-ceramic discs. Dent Mater 2005;21:649-55. https://doi.org/10.1016/j.dental.2004.09.001
  46. Fairhurst CW, Anusavice KJ, Hashinger DT, Ringle RD, Twiggs SW. Thermal expansion of dental alloys and porcelains. J Biomed Mater Res 1980;14:435-46. https://doi.org/10.1002/jbm.820140410
  47. Isgro G, Kleverlaan CJ, Wang H, Feilzer AJ. Thermal dimensional behavior of dental ceramics. Biomaterials 2004;25:2447-53. https://doi.org/10.1016/j.biomaterials.2003.09.027

피인용 문헌

  1. A comparative study of marginal fit of copings prepared with various techniques on different implant abutments vol.35, pp.3, 2016, https://doi.org/10.4012/dmj.2015-252
  2. Comparison of the fit accuracy of zirconia-based prostheses generated by two CAD/CAM systems vol.8, pp.6, 2016, https://doi.org/10.4047/jap.2016.8.6.439
  3. The effect of veneering on the marginal fit of CAD/CAM-generated, copy-milled, and cast metal copings vol.21, pp.8, 2017, https://doi.org/10.1007/s00784-017-2054-x
  4. Fit of CAD/CAM Tooth-supported Single Crowns and Fixed Dental Prostheses vol.4, pp.2, 2017, https://doi.org/10.1007/s40496-017-0139-x
  5. Verification of a computer-aided replica technique for evaluating prosthesis adaptation using statistical agreement analysis vol.9, pp.5, 2017, https://doi.org/10.4047/jap.2017.9.5.358
  6. Digital microscopic evaluation of vertical marginal discrepancies of CAD/CAM fabricated zirconia cores vol.0, pp.0, 2018, https://doi.org/10.1515/bmt-2017-0234
  7. Effects of Computer-Aided Manufacturing Technology on Precision of Clinical Metal-Free Restorations vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/619027
  8. Development of a Novel Fabrication System of Titanium-based Facing Restorations vol.18, pp.3, 2015, https://doi.org/10.5466/ijoms.18.265
  9. In Vitro Evaluation of Bond Strength between Zirconia Core and CAD/CAM‐Produced Veneers vol.29, pp.1, 2015, https://doi.org/10.1111/jopr.13068
  10. Ceramic Materials and Technologies Applied to Digital Works in Implant-Supported Restorative Dentistry vol.13, pp.8, 2020, https://doi.org/10.3390/ma13081964
  11. Fit of tooth‐supported zirconia single crowns—A systematic review of the literature vol.6, pp.6, 2015, https://doi.org/10.1002/cre2.323
  12. Effect of cementation and aging on the marginal fit of veneered and monolithic zirconia and metal-ceramic CAD-CAM crowns vol.125, pp.2, 2015, https://doi.org/10.1016/j.prosdent.2020.06.036
  13. Effects of porcelain veneering methods on conformity of the marginal and internal fit of three-unit zirconia framework vol.109, pp.3, 2015, https://doi.org/10.1007/s10266-021-00595-3
  14. Vertical marginal fit of zirconia copings fabricated with one direct and three indirect digital scanning techniques vol.126, pp.3, 2015, https://doi.org/10.1016/j.prosdent.2020.03.028