Browse > Article
http://dx.doi.org/10.4047/jap.2015.7.3.233

The effect of various veneering techniques on the marginal fit of zirconia copings  

Torabi, Kianoosh (Department of Prosthodontics, Faculty of Dentistry, Shiraz University of Medical Sciences)
Vojdani, Mahroo (Biomaterial Research Center, Department of Prosthodontics, Faculty of Dentistry, Shiraz University of Medical Sciences)
Giti, Rashin (Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences)
Taghva, Masumeh (Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences)
Pardis, Soheil (Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Shiraz University of Medical Sciences)
Publication Information
The Journal of Advanced Prosthodontics / v.7, no.3, 2015 , pp. 233-239 More about this Journal
Abstract
PURPOSE. This study aimed to evaluate the fit of zirconia ceramics before and after veneering, using 3 different veneering processes (layering, press-over, and CAD-on techniques). MATERIALS AND METHODS. Thirty standardized zirconia CAD/CAM frameworks were constructed and divided into three groups of 10 each. The first group was veneered using the traditional layering technique. Press-over and CAD-on techniques were used to veneer second and third groups. The marginal gap of specimens was measured before and after veneering process at 18 sites on the master die using a digital microscope. Paired t-test was used to evaluate mean marginal gap changes. One-way ANOVA and post hoc tests were also employed for comparison among 3 groups (${\alpha}$=.05). RESULTS. Marginal gap of 3 groups was increased after porcelain veneering. The mean marginal gap values after veneering in the layering group ($63.06{\mu}m$) was higher than press-over ($50.64{\mu}m$) and CAD-on ($51.50{\mu}m$) veneered groups (P<.001). CONCLUSION. Three veneering methods altered the marginal fit of zirconia copings. Conventional layering technique increased the marginal gap of zirconia framework more than pressing and CADon techniques. All ceramic crowns made through three different veneering methods revealed clinically acceptable marginal fit.
Keywords
Marginal fit; CAD/CAM; Zirconia; Layering; Press-over; CAD-on;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sadowsky SJ. An overview of treatment considerations for esthetic restorations: a review of the literature. J Prosthet Dent 2006;96:433-42.   DOI
2 Liu PR. A panorama of dental CAD/CAM restorative systems. Compend Contin Educ Dent 2005;26:507-8.
3 Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28:44-56.   DOI
4 Bachhav VC, Aras MA. Zirconia-based fixed partial dentures: a clinical review. Quintessence Int 2011;42:173-82.
5 Contrepois M, Soenen A, Bartala M, Laviole O. Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent 2013;110:447-54.   DOI
6 Jacobs MS, Windeler AS. An investigation of dental luting cement solubility as a function of the marginal gap. J Prosthet Dent 1991;65:436-42.   DOI
7 Bjorn AL, Bjorn H, Grkovic B. Marginal fit of restorations and its relation to periodontal bone level. II. Crowns. Odontol Revy 1970;21:337-46.
8 Schwartz NL, Whitsett LD, Berry TG, Stewart JL. Unserviceable crowns and fixed partial dentures: life-span and causes for loss of serviceability. J Am Dent Assoc 1970;81:1395-401.   DOI
9 Bergenholtz G, Cox CF, Loesche WJ, Syed SA. Bacterial leakage around dental restorations: its effect on the dental pulp. J Oral Pathol 1982;11:439-50.   DOI
10 Heintze SD. Systematic reviews: I. The correlation between laboratory tests on marginal quality and bond strength. II. The correlation between marginal quality and clinical outcome. J Adhes Dent 2007;9:77-106.
11 McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11.   DOI
12 Euan R, Figueras-Alvarez O, Cabratosa-Termes J, Oliver-Parra R. Marginal adaptation of zirconium dioxide copings: influence of the CAD/CAM system and the finish line design. J Prosthet Dent 2014;112:155-62.   DOI
13 Holmes JR, Sulik WD, Holland GA, Bayne SC. Marginal fit of castable ceramic crowns. J Prosthet Dent 1992;67:594-9.   DOI
14 Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989;62:405-8.   DOI
15 Ushiwata O, de Moraes JV. Method for marginal measurements of restorations: accessory device for toolmakers microscope. J Prosthet Dent 2000;83:362-6.   DOI
16 Rosensteil SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. Tooth preparation for All-ceramic restorations. 4th ed. St. Louis; Elsevier; 2006. p. 326.
17 Alghazzawi TF, Liu PR, Essig ME. The effect of different fabrication steps on the marginal adaptation of two types of glass-infiltrated ceramic crown copings fabricated by CAD/CAM technology. J Prosthodont 2012;21:167-72.   DOI
18 Sorensen JA. A standardized method for determination of crown margin fidelity. J Prosthet Dent 1990;64:18-24.   DOI
19 Christensen GJ. Marginal fit of gold inlay castings. J Prosthet Dent 1966;16:297-305.   DOI
20 Euan R, Figueras-Alvarez O, Cabratosa-Termes J, Brufau-de Barbera M, Gomes-Azevedo S. Comparison of the marginal adaptation of zirconium dioxide crowns in preparations with two different finish lines. J Prosthodont 2012;21:291-5.   DOI
21 Kokubo Y, Ohkubo C, Tsumita M, Miyashita A, Vult von Steyern P, Fukushima S. Clinical marginal and internal gaps of Procera AllCeram crowns. J Oral Rehabil 2005;32:526-30.   DOI
22 Lee KB, Park CW, Kim KH, Kwon TY. Marginal and internal fit of all-ceramic crowns fabricated with two different CAD/CAM systems. Dent Mater J 2008;27:422-6.   DOI
23 Bhowmik H, Parkhedkar R. A comparison of marginal fit of glass infiltrated alumina copings fabricated using two different techniques and the effect of firing cycles over them. J Adv Prosthodont 2011;3:196-203.   DOI
24 Sorensen JA. A standardized method for determination of crown margin fidelity. J Prosthet Dent 1990;64:18-24.   DOI
25 Balkaya MC, Cinar A, Pamuk S. Influence of firing cycles on the margin distortion of 3 all-ceramic crown systems. J Prosthet Dent 2005;93:346-55.   DOI
26 Luthardt RG, Bornemann G, Lemelson S, Walter MH, Huls A. An innovative method for evaluation of the 3-D internal fit of CAD/CAM crowns fabricated after direct optical versus indirect laser scan digitizing. Int J Prosthodont 2004;17:680-5.
27 Pelekanos S, Koumanou M, Koutayas SO, Zinelis S, Eliades G. Micro-CT evaluation of the marginal fit of different In-Ceram alumina copings. Eur J Esthet Dent 2009;4:278-92.
28 Kanat B, Comlekoglu EM, Dundar-Comlekoglu M, Hakan Sen B, Ozcan M, Ali Gungor M. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs. J Prosthodont 2014;23:445-55.   DOI
29 Wimmer T, Erdelt KJ, Eichberger M, Roos M, Edelhoff D, Stawarczyk B. Influence of abutment model materials on the fracture loads of three-unit fixed dental prostheses. Dent Mater J 2014;33:717-24.   DOI
30 Tsalouchou E, Cattell MJ, Knowles JC, Pittayachawan P, McDonald A. Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dent Mater 2008;24:308-18.   DOI
31 Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings-a new fabrication mode for all-ceramic restorations. Dent Mater 2009;25:121-8.   DOI
32 Aboushelib MN, Feilzer AJ, de Jager N, Kleverlaan CJ. Prestresses in bilayered all-ceramic restorations. J Biomed Mater Res B Appl Biomater 2008;87:139-45.
33 Weaver JD, Johnson GH, Bales DJ. Marginal adaptation of castable ceramic crowns. J Prosthet Dent 1991;66:747-53.   DOI
34 DeHoff PH, Barrett AA, Lee RB, Anusavice KJ. Thermal compatibility of dental ceramic systems using cylindrical and spherical geometries. Dent Mater 2008;24:744-52.   DOI
35 Nielsen JP, Tuccillo JJ. Calculation of interfacial stress in dental porcelain bonded to gold alloy substrate. J Dent Res 1972;51:1043-7.   DOI
36 Isgro G, Wang H, Kleverlaan CJ, Feilzer AJ. The effects of thermal mismatch and fabrication procedures on the deflection of layered all-ceramic discs. Dent Mater 2005;21:649-55.   DOI
37 Fairhurst CW, Anusavice KJ, Hashinger DT, Ringle RD, Twiggs SW. Thermal expansion of dental alloys and porcelains. J Biomed Mater Res 1980;14:435-46.   DOI
38 Isgro G, Kleverlaan CJ, Wang H, Feilzer AJ. Thermal dimensional behavior of dental ceramics. Biomaterials 2004;25:2447-53.   DOI
39 Shearer B, Gough MB, Setchell DJ. Influence of marginal configuration and porcelain addition on the fit of In-Ceram crowns. Biomaterials 1996;17:1891-5.   DOI
40 Pera P, Gilodi S, Bassi F, Carossa S. In vitro marginal adaptation of alumina porcelain ceramic crowns. J Prosthet Dent 1994;72:585-90.   DOI
41 Castellani D, Baccetti T, Clauser C, Bernardini UD. Thermal distortion of different materials in crown construction. J Prosthet Dent 1994;72:360-6.   DOI
42 Pak HS, Han JS, Lee JB, Kim SH, Yang JH. Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns. J Adv Prosthodont 2010;2:33-8.   DOI
43 Fahmy NZ. Influence of veneering materials on the marginal fit and fracture resistance of an alumina core system. J Prosthodont 2011;20:45-51.   DOI
44 Kohorst P, Brinkmann H, Dittmer MP, Borchers L, Stiesch M. Influence of the veneering process on the marginal fit of zirconia fixed dental prostheses. J Oral Rehabil 2010;37:283-91.   DOI
45 Sulaiman F, Chai J, Jameson LM, Wozniak WT. A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns. Int J Prosthodont 1997;10:478-84.
46 Cho SH, Nagy WW, Goodman JT, Solomon E, Koike M. The effect of multiple firings on the marginal integrity of pressable ceramic single crowns. J Prosthet Dent 2012;107:17-23.   DOI
47 Miura S, Inagaki R, Kasahara S, Yoda M. Fit of zirconia allceramic crowns with different cervical margin designs, before and after porcelain firing and glazing. Dent Mater J 2014;33:484-9.   DOI