DOI QR코드

DOI QR Code

Effects of a Dielectric Multilayer Mirror on the Lighting Efficiency of Organic Light-Emitting Diodes Studied by Optical Simulation

유전체 다층 거울이 유기발광다이오드의 광효율 향상에 미치는 영향에 관한 광학 시뮬레이션 연구

  • 이성준 (한림대학교 전자물리학과) ;
  • 고재현 (한림대학교 전자물리학과)
  • Received : 2015.05.11
  • Accepted : 2015.05.29
  • Published : 2015.06.25

Abstract

The effects of a dielectric multilayer mirror on the efficiency of organic light-emitting diodes (OLEDs) were investigated by using optical simulation. Adoption of a dielectric mirror consisting of alternating SiN and $SiO_2$ layers narrowed the emission spectrum due to the microcavity effect, and increased the outcoupling efficiency by a few percent. The layer thicknesses of the dielectric mirror were adjusted to change the wavelength of the resonance mode, which may be used to increase the color purity.

본 논문에서는 유전체 다층 거울을 이용해 구성된 파브리-페롯 미소공진 구조가 유기발광다이오드(OLED)의 광효율에 미치는 영향을 유한차분 시간영역법과 광선추적법을 결합해 분석하였다. SiN과 $SiO_2$ 층을 교대로 쌓아 구성한 유전체 다층박막의 적용은 미소공진 효과를 강화시켜 OLED의 발광 스펙트럼의 협소화를 유도하였고 광추출효율도 수 % 증가하였다. 유전체 다층박막의 두께를 최적화함으로써 특정 파장에 대해 미소공진 효과를 일으킬 수 있었고 이는 OLED 발광색의 순도를 증가시키는데 활용될 수 있다. 광추출효율을 극대화하는 전자수송층의 최적 두께는 발광파장에 따라 달라졌는데, 이는 유기층 물질이 보이는 굴절률의 분산 때문인 것으로 생각된다.

Keywords

References

  1. K. Hong and J.-L. Lee, "Recent developments in light extraction technologies of organic light emitting diodes," Electron. Mater. Lett. 7, 77-91 (2011). https://doi.org/10.1007/s13391-011-0601-1
  2. W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, "Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling," Phys. Status Solidi A 210, 44-65 (2012).
  3. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, and S. R. Forrest, "High-external-quantum-efficiency organic light-emitting devices," Opt. Lett. 22, 396-398 (1997). https://doi.org/10.1364/OL.22.000396
  4. J. Frischeisen, B. Scholz, B. Arndt, T. Schmidt, R. Gehlhaar, C. Adachi, and W. Brutting, "Strategies for enhanced light extraction from surface plasmons in organic light-emitting diodes," J. Photonic. Energy 1, 011004 (2011). https://doi.org/10.1117/1.3523314
  5. C. F. Madigan, M.-H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000). https://doi.org/10.1063/1.126124
  6. S. Moller and S. R. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002). https://doi.org/10.1063/1.1435422
  7. M.-L. Chen, A.-C. Wei, and H.-P. Shieh, "Increased organic light-emitting diode panel light efficiency by optimizing structure and improving alignment of pyramidal array lightenhancing layers," Jpn. J. Appl. Phys. 46, 1521-1525 (2007). https://doi.org/10.1143/JJAP.46.1521
  8. C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 253508 (2007). https://doi.org/10.1063/1.2827182
  9. Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, "Enhanced light outcoupling in a thin film by texturing meshed surfaces," Appl. Phys. Lett. 90, 091102 (2007). https://doi.org/10.1063/1.2709920
  10. C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, "Microcavity topemitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics," Appl. Phys. Lett. 94, 103302 (2009). https://doi.org/10.1063/1.3097354
  11. N. Nakamura, N. Fukumoto, F. Sinapi, N. Wada, Y. Aoki, and K. Maeda, "Glass substrates for OLED lighting with high out-coupling efficiency," SID'09 Tech. Digest, 603-606 (2009).
  12. S. S. Jeong and J.-H. Ko, "Simulation study on the optical structures for improving outcoupling efficiency of organic light emitting diodes," J. Inf. Disp. 13, 139-143 (2012). https://doi.org/10.1080/15980316.2012.734258
  13. S. Okutani, N. Kamiura, H. Sano, T. Sawatani, D. Fujita, T. Takehara, K. Sunohara, and M. Kobayashi, "A 20.8-inch WXGA full color AMOLED display by integrating scattering reflector with micro-bumps," SID'07 Tech. Digest, 173-176 (2007).
  14. Y. Sun and S. R. Forrest, "Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids," Nature Photonics 2, 483-487 (2008). https://doi.org/10.1038/nphoton.2008.132
  15. T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, "Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes," Adv. Mater. 22, 1849-1853 (2010). https://doi.org/10.1002/adma.200903375
  16. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, "Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles," Nature Photonics 4, 222-226 (2010). https://doi.org/10.1038/nphoton.2010.7
  17. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim. and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003). https://doi.org/10.1063/1.1577823
  18. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. 13, 1149-1152 (2001). https://doi.org/10.1002/1521-4095(200108)13:15<1149::AID-ADMA1149>3.0.CO;2-2
  19. H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, "Enhanced coupling of light from organic light emitting diodes using nanoporous films," J. Appl. Phys. 96, 1649-1654 (2004). https://doi.org/10.1063/1.1765859
  20. K. Hong, H. K. Yu, I. Lee, K. Kim, S. Kim, and J.-L. Lee, "Enhanced light out-coupling of organic light-emitting diodes: spontaneously formed nanofacet-structured MgO as a refractive index modulation layer," Adv. Mater. 22, 4890-4894 (2010). https://doi.org/10.1002/adma.201002028
  21. J.-B. Kim, J.-H. Lee, C.-K. Moon, S.-Y. Kim, and J.-H. Kim, "Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes," Adv. Mater. 25, 3571-3577 (2013). https://doi.org/10.1002/adma.201205233
  22. J.-H. Jang, K.-J. Kim, J.-H. Kim, and M.-C. Oh, "Outcoupling enhancement of OLED using microlens array and diffractive grating," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 18, 441-446 (2007). https://doi.org/10.3807/HKH.2007.18.6.441
  23. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, "White organic light-emitting diodes with fluorescent tube efficiency," Nature (London) 459, 234-239 (2009). https://doi.org/10.1038/nature08003
  24. J.-S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, "Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations," J. Appl. Phys. 88, 1073-1081 (2000). https://doi.org/10.1063/1.373779
  25. M. Flammich, M. C. Gather, N. Danz, D. Michaelis, A. H. Brauer, K. Meerholz, and A. Tunnermann, "Orientation of emissive dipole in OLEDs: Quantitative in situ analysis," Org. Electron. 11, 1039-1046 (2010). https://doi.org/10.1016/j.orgel.2010.03.002
  26. M. Flammich, J. Frischeisen, D. S. Setz, D. Michaelis, B. C. Krummacher, T. D. Schmidt, W. Brutting, and N. Danz, "Oriented phosphorescent emitters boost OLED efficiency," Org. Electron. 12, 1663-1668 (2011). https://doi.org/10.1016/j.orgel.2011.06.011
  27. P. Liehm, C. Murawski, M. Furno, B. Lussem, K. Leo, and M. C. Gather, "Comparing the emissive dipole orientation of two similar phosphorescent green emitter molecules in highly efficient organic light-emitting diodes," Appl. Phys. Lett. 101, 253304 (2012). https://doi.org/10.1063/1.4773188
  28. S.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brutting, and J.-J. Kim, "Organic light-emitting diodes with 30% external quantum effi ciency based on a horizontally oriented emitter," Adv. Funct. Mater. 23, 3896-3900 (2013). https://doi.org/10.1002/adfm.201300104
  29. K.-H. Kim, C.-K. Moon, J.-H. Lee, S.-Y. Kim, and J.-J. Kim, "Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments," Adv. Mater. 26, 3844-3847 (2014). https://doi.org/10.1002/adma.201305733
  30. J. S. Lee, J.-H. Ko, J. Park, and J. W. Lee, "Simulation study on the effect of the emitter orientation and photonic crystals on the outcoupling efficiency of organic light-emitting diodes," J. Opt. Soc. Korea. 18, 732-738 (2014). https://doi.org/10.3807/JOSK.2014.18.6.732
  31. S. S. Jeong and J.-H. Ko, "Optical simulation study on the effect of diffusing substrate and pillow lenses on the outcoupling efficiency of organic light emitting diodes," J. Opt. Soc. Korea 17, 269-274 (2013). https://doi.org/10.3807/JOSK.2013.17.3.269
  32. S. S. Jeong, H.-W. Choi, and J.-H. Ko, "Simulation study on the outcoupling efficiency and intensity distribution of photonic crystal-based organic light-emitting diodes," New Physics: Sae Mulli 63, 892-899 (2013). https://doi.org/10.3938/NPSM.63.892
  33. N. Takada, T. Tsutsui, and S. Saito, "Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure," Appl. Phys. Lett. 63, 2032-2034 (1993). https://doi.org/10.1063/1.110582
  34. A. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, "Microcavity effects in organic semiconductors," Appl. Phys. Lett. 64, 2486-2488 (1994). https://doi.org/10.1063/1.111606
  35. T. Tsutsui, N. Takada, S. Saito, and E. Ogino, "Sharply directed emission in organic electroluminescent diodes with an optical microcavity structure," Appl. Phys. Lett. 65, 1868-1870 (1994). https://doi.org/10.1063/1.113043
  36. T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995). https://doi.org/10.1063/1.115549
  37. R. H. Jordan, A. Dodabalapur, and R. E. Slusher, "Efficiency enhancement of microcavity organic light emitting diodes," Appl. Phys. Lett. 69, 1997-1999 (1995).
  38. V. Cimrova and D. Neher, "Microcavity effects in single-layer light-emitting devices based on poly(p-phenylene vinylene)," J. Appl. Phys. 79, 3299-3306 (1996). https://doi.org/10.1063/1.361229
  39. J. Gruner, F. Cacialli, and R. H. Friend, "Emission enhancement in single-layer conjugated polymer microcavities," J. Appl. Phys. 80, 207-215 (1996). https://doi.org/10.1063/1.362806
  40. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996). https://doi.org/10.1063/1.363768
  41. N. Tessler, S. Burns, H. Becker, and R. H. Friend, "Suppressed angular color dispersion in planar microcavities," Appl. Phys. Lett. 70, 556-558 (1997). https://doi.org/10.1063/1.118207
  42. H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, "Role of optical properties of metallic mirrors in microcavity structures," J. Appl. Phys. 81, 2825-2829 (1997). https://doi.org/10.1063/1.363940
  43. S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, "Interference effects in bilayer organic light-emitting diodes," Appl. Phys. Lett. 74, 1939-1941 (1999). https://doi.org/10.1063/1.123734
  44. T. Shiga, H. Fujikawa, and Y. Taga, "Design of multiwavelength resonant cavities for white organic light-emitting diodes," J. Appl. Phys. 93, 19-22 (2003). https://doi.org/10.1063/1.1527708
  45. C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, "Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode," Appl. Phys. Lett. 88, 081114 (2006). https://doi.org/10.1063/1.2178485
  46. M. Agrawal, Y. Sun, S. R. Forrest, and P. Peumans, "Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors," Appl. Phys. Lett. 90, 241112 (2007). https://doi.org/10.1063/1.2748859
  47. W. C. H. Choy and C. Y. Ho, "Improving the viewing angle properties of microcavity OLEDs by using dispersive gratings," Opt. Express 15, 13288-13294 (2007). https://doi.org/10.1364/OE.15.013288
  48. J. Lee, N. Chopra, and F. So, "Cavity effects on light extraction in organic light emitting devices," Appl. Phys. Lett. 92, 033303 (2008). https://doi.org/10.1063/1.2830820
  49. R. Meerheim, R. Nitsche, and K. Leo, "High-efficiency monochrome organic light emitting diodes employing enhanced microcavities," Appl. Phys. Lett. 93, 043310 (2008). https://doi.org/10.1063/1.2966784
  50. C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics," Appl. Phys. Lett. 94, 103302 (2009). https://doi.org/10.1063/1.3097354
  51. H. Cho, C. Yun, and S. Yoo, "Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics," Opt. Express 18, 3404-3414 (2010). https://doi.org/10.1364/OE.18.003404