Browse > Article
http://dx.doi.org/10.3807/KJOP.2015.26.3.139

Effects of a Dielectric Multilayer Mirror on the Lighting Efficiency of Organic Light-Emitting Diodes Studied by Optical Simulation  

Lee, Sung-Jun (Department of Physics, Hallym University)
Ko, Jae-Hyeon (Department of Physics, Hallym University)
Publication Information
Korean Journal of Optics and Photonics / v.26, no.3, 2015 , pp. 139-146 More about this Journal
Abstract
The effects of a dielectric multilayer mirror on the efficiency of organic light-emitting diodes (OLEDs) were investigated by using optical simulation. Adoption of a dielectric mirror consisting of alternating SiN and $SiO_2$ layers narrowed the emission spectrum due to the microcavity effect, and increased the outcoupling efficiency by a few percent. The layer thicknesses of the dielectric mirror were adjusted to change the wavelength of the resonance mode, which may be used to increase the color purity.
Keywords
OLED; Dielectric mirror; Microcavity;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 K. Hong and J.-L. Lee, "Recent developments in light extraction technologies of organic light emitting diodes," Electron. Mater. Lett. 7, 77-91 (2011).   DOI   ScienceOn
2 T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. 13, 1149-1152 (2001).   DOI
3 H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, "Enhanced coupling of light from organic light emitting diodes using nanoporous films," J. Appl. Phys. 96, 1649-1654 (2004).   DOI
4 K. Hong, H. K. Yu, I. Lee, K. Kim, S. Kim, and J.-L. Lee, "Enhanced light out-coupling of organic light-emitting diodes: spontaneously formed nanofacet-structured MgO as a refractive index modulation layer," Adv. Mater. 22, 4890-4894 (2010).   DOI
5 J.-B. Kim, J.-H. Lee, C.-K. Moon, S.-Y. Kim, and J.-H. Kim, "Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes," Adv. Mater. 25, 3571-3577 (2013).   DOI
6 J.-H. Jang, K.-J. Kim, J.-H. Kim, and M.-C. Oh, "Outcoupling enhancement of OLED using microlens array and diffractive grating," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 18, 441-446 (2007).   DOI
7 S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, "White organic light-emitting diodes with fluorescent tube efficiency," Nature (London) 459, 234-239 (2009).   DOI
8 J.-S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, "Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations," J. Appl. Phys. 88, 1073-1081 (2000).   DOI
9 M. Flammich, M. C. Gather, N. Danz, D. Michaelis, A. H. Brauer, K. Meerholz, and A. Tunnermann, "Orientation of emissive dipole in OLEDs: Quantitative in situ analysis," Org. Electron. 11, 1039-1046 (2010).   DOI
10 H. Cho, C. Yun, and S. Yoo, "Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics," Opt. Express 18, 3404-3414 (2010).   DOI
11 W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, "Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling," Phys. Status Solidi A 210, 44-65 (2012).
12 G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, and S. R. Forrest, "High-external-quantum-efficiency organic light-emitting devices," Opt. Lett. 22, 396-398 (1997).   DOI
13 J. Frischeisen, B. Scholz, B. Arndt, T. Schmidt, R. Gehlhaar, C. Adachi, and W. Brutting, "Strategies for enhanced light extraction from surface plasmons in organic light-emitting diodes," J. Photonic. Energy 1, 011004 (2011).   DOI
14 C. F. Madigan, M.-H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).   DOI
15 S. Moller and S. R. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).   DOI
16 M.-L. Chen, A.-C. Wei, and H.-P. Shieh, "Increased organic light-emitting diode panel light efficiency by optimizing structure and improving alignment of pyramidal array lightenhancing layers," Jpn. J. Appl. Phys. 46, 1521-1525 (2007).   DOI
17 C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 253508 (2007).   DOI
18 Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, "Enhanced light outcoupling in a thin film by texturing meshed surfaces," Appl. Phys. Lett. 90, 091102 (2007).   DOI
19 P. Liehm, C. Murawski, M. Furno, B. Lussem, K. Leo, and M. C. Gather, "Comparing the emissive dipole orientation of two similar phosphorescent green emitter molecules in highly efficient organic light-emitting diodes," Appl. Phys. Lett. 101, 253304 (2012).   DOI
20 M. Flammich, J. Frischeisen, D. S. Setz, D. Michaelis, B. C. Krummacher, T. D. Schmidt, W. Brutting, and N. Danz, "Oriented phosphorescent emitters boost OLED efficiency," Org. Electron. 12, 1663-1668 (2011).   DOI
21 S.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brutting, and J.-J. Kim, "Organic light-emitting diodes with 30% external quantum effi ciency based on a horizontally oriented emitter," Adv. Funct. Mater. 23, 3896-3900 (2013).   DOI
22 K.-H. Kim, C.-K. Moon, J.-H. Lee, S.-Y. Kim, and J.-J. Kim, "Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments," Adv. Mater. 26, 3844-3847 (2014).   DOI
23 J. S. Lee, J.-H. Ko, J. Park, and J. W. Lee, "Simulation study on the effect of the emitter orientation and photonic crystals on the outcoupling efficiency of organic light-emitting diodes," J. Opt. Soc. Korea. 18, 732-738 (2014).   DOI
24 S. S. Jeong and J.-H. Ko, "Optical simulation study on the effect of diffusing substrate and pillow lenses on the outcoupling efficiency of organic light emitting diodes," J. Opt. Soc. Korea 17, 269-274 (2013).   DOI   ScienceOn
25 S. S. Jeong, H.-W. Choi, and J.-H. Ko, "Simulation study on the outcoupling efficiency and intensity distribution of photonic crystal-based organic light-emitting diodes," New Physics: Sae Mulli 63, 892-899 (2013).   DOI
26 T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).   DOI
27 N. Takada, T. Tsutsui, and S. Saito, "Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure," Appl. Phys. Lett. 63, 2032-2034 (1993).   DOI
28 A. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, "Microcavity effects in organic semiconductors," Appl. Phys. Lett. 64, 2486-2488 (1994).   DOI
29 T. Tsutsui, N. Takada, S. Saito, and E. Ogino, "Sharply directed emission in organic electroluminescent diodes with an optical microcavity structure," Appl. Phys. Lett. 65, 1868-1870 (1994).   DOI
30 R. H. Jordan, A. Dodabalapur, and R. E. Slusher, "Efficiency enhancement of microcavity organic light emitting diodes," Appl. Phys. Lett. 69, 1997-1999 (1995).
31 V. Cimrova and D. Neher, "Microcavity effects in single-layer light-emitting devices based on poly(p-phenylene vinylene)," J. Appl. Phys. 79, 3299-3306 (1996).   DOI
32 J. Gruner, F. Cacialli, and R. H. Friend, "Emission enhancement in single-layer conjugated polymer microcavities," J. Appl. Phys. 80, 207-215 (1996).   DOI
33 A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).   DOI
34 N. Tessler, S. Burns, H. Becker, and R. H. Friend, "Suppressed angular color dispersion in planar microcavities," Appl. Phys. Lett. 70, 556-558 (1997).   DOI
35 S. Okutani, N. Kamiura, H. Sano, T. Sawatani, D. Fujita, T. Takehara, K. Sunohara, and M. Kobayashi, "A 20.8-inch WXGA full color AMOLED display by integrating scattering reflector with micro-bumps," SID'07 Tech. Digest, 173-176 (2007).
36 C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, "Microcavity topemitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics," Appl. Phys. Lett. 94, 103302 (2009).   DOI
37 N. Nakamura, N. Fukumoto, F. Sinapi, N. Wada, Y. Aoki, and K. Maeda, "Glass substrates for OLED lighting with high out-coupling efficiency," SID'09 Tech. Digest, 603-606 (2009).
38 S. S. Jeong and J.-H. Ko, "Simulation study on the optical structures for improving outcoupling efficiency of organic light emitting diodes," J. Inf. Disp. 13, 139-143 (2012).   DOI   ScienceOn
39 Y. Sun and S. R. Forrest, "Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids," Nature Photonics 2, 483-487 (2008).   DOI
40 T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, "Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes," Adv. Mater. 22, 1849-1853 (2010).   DOI
41 W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, "Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles," Nature Photonics 4, 222-226 (2010).   DOI
42 Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim. and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).   DOI
43 C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, "Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode," Appl. Phys. Lett. 88, 081114 (2006).   DOI
44 H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, "Role of optical properties of metallic mirrors in microcavity structures," J. Appl. Phys. 81, 2825-2829 (1997).   DOI
45 S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, "Interference effects in bilayer organic light-emitting diodes," Appl. Phys. Lett. 74, 1939-1941 (1999).   DOI
46 T. Shiga, H. Fujikawa, and Y. Taga, "Design of multiwavelength resonant cavities for white organic light-emitting diodes," J. Appl. Phys. 93, 19-22 (2003).   DOI
47 M. Agrawal, Y. Sun, S. R. Forrest, and P. Peumans, "Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors," Appl. Phys. Lett. 90, 241112 (2007).   DOI
48 W. C. H. Choy and C. Y. Ho, "Improving the viewing angle properties of microcavity OLEDs by using dispersive gratings," Opt. Express 15, 13288-13294 (2007).   DOI
49 J. Lee, N. Chopra, and F. So, "Cavity effects on light extraction in organic light emitting devices," Appl. Phys. Lett. 92, 033303 (2008).   DOI
50 R. Meerheim, R. Nitsche, and K. Leo, "High-efficiency monochrome organic light emitting diodes employing enhanced microcavities," Appl. Phys. Lett. 93, 043310 (2008).   DOI
51 C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics," Appl. Phys. Lett. 94, 103302 (2009).   DOI