DOI QR코드

DOI QR Code

Different Functional and Structural Characteristics between ApoA-I and ApoA-4 in Lipid-Free and Reconstituted HDL State: ApoA-4 Showed Less Anti-Atherogenic Activity

  • Yoo, Jeong-Ah (School of Biotechnology, Yeungnam University) ;
  • Lee, Eun-Young (School of Biotechnology, Yeungnam University) ;
  • Park, Ji Yoon (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Seung-Taek (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Ham, Sihyun (Department of Chemistry, Sookmyung Women's University) ;
  • Cho, Kyung-Hyun (School of Biotechnology, Yeungnam University)
  • Received : 2015.02.23
  • Accepted : 2015.03.18
  • Published : 2015.06.30

Abstract

Apolipoprotein A-I and A-IV are protein constituents of high-density lipoproteins although their functional difference in lipoprotein metabolism is still unclear. To compare anti-atherogenic properties between apoA-I and apoA-4, we characterized both proteins in lipid-free and lipidbound state. In lipid-free state, apoA4 showed two distinct bands, around 78 and $67{\AA}$ on native gel electrophoresis, while apoA-I showed scattered band pattern less than $71{\AA}$. In reconstituted HDL (rHDL) state, apoA-4 showed three major bands around $101{\AA}$ and $113{\AA}$, while apoA-I-rHDL showed almost single band around $98{\AA}$ size. Lipid-free apoA-I showed 2.9-fold higher phospholipid binding ability than apoA-4. In lipid-free state, $BS_3$-crosslinking revealed that apoA-4 showed less multimerization tendency upto dimer, while apoA-I showed pentamerization. In rHDL state (95:1), apoA-4 was existed as dimer as like as apoA-I. With higher phospholipid content (255:1), five apoA-I and three apoA-4 were required to the bigger rHDL formation. Regardless of particle size, apoA-I-rHDL showed superior LCAT activation ability than apoA-4-rHDL. Uptake of acetylated LDL was inhibited by apoA-I in both lipid-free and lipid-bound state, while apoA-4 inhibited it only lipid-free state. ApoA-4 showed less anti-atherogenic activity with more sensitivity to glycation. In conclusion, apoA-4 showed inferior physiological functions in lipid-bound state, compared with those of apoA-I, to induce more pro-atherosclerotic properties.

Keywords

References

  1. Beisiegel, U., and Utermann, G. (1979). An apolipoprotein homolog of rat apolipoprotein A-IV in human plasma. Isolation and partial characterization. Eur. J. Biochem. 93, 601-608 https://doi.org/10.1111/j.1432-1033.1979.tb12860.x
  2. Boguski, M.S., Elshourbagy, N., Taylor, J.M., and Gordon, J.I. (1984). Rat apolipoprotein A-IV contains 13 tandem repetitions of a 22-amino acid segment with amphipathic helical potential. Proc. Natl. Acad. Sci. USA 81, 5021-5025. https://doi.org/10.1073/pnas.81.16.5021
  3. Brouillette, C.G., Anantharamaiah, G.M., Engler, J.A., and Borhani, D.W. (2001). Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim. Biophys. Acta. 1531, 40-46.
  4. Chen, P.S., Toribara, T.Y., and Warner, H. (1956). Microdetermination of phosphorus. Anal .Chem. 28, 1756-1758. https://doi.org/10.1021/ac60119a033
  5. Chen, Y.H., Yang, J.T., and Martinez, H.M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120-4131. https://doi.org/10.1021/bi00772a015
  6. Cho, K.H. (2009). Biomedicinal implications of high-density lipoprotein: its composition, structure, functions, and clinical applications. BMB Rep. 42, 393-400. https://doi.org/10.5483/BMBRep.2009.42.7.393
  7. Cho, K.H. (2011). Enhanced delivery of rapamycin by V156K-apoAI high-density lipoprotein inhibits cellular proatherogenic effects and senescence and promotes tissue regeneration. J. Gerontol. A. Biol. Sci. Med. Sci. 66, 1274-1285.
  8. Cho, K.H., Park, S.H., Han, J.M., Kim, H.C., Choi, Y.K., and Choi, I. (2006). ApoA-I mutants V156K and R173C promote antiinflammatory function and antioxidant activities. Eur. J. Clin. Invest. 36, 875-882. https://doi.org/10.1111/j.1365-2362.2006.01737.x
  9. Davidson, W.S., Hazlett, T., Mantulin, W.W., and Jonas, A. (1996). The role of apolipoprotein A-I domains in lipid binding. Proc. Natl. Acad. Sci. USA 93, 13605-13610. https://doi.org/10.1073/pnas.93.24.13605
  10. Ezeh, B., Haiman, M., Alber, H.F., Kunz, B., Paulweber, B., Lingenhel, A., Kraft, H.G., Weidinger, F., Pachinger, O., Dieplinger, H., et al. (2003). Plasma distribution of apoA-IV in patients with coronary artery disease and healthy controls. J. Lipid Res. 44, 1523-1529. https://doi.org/10.1194/jlr.M300060-JLR200
  11. Ferretti, G., Bacchetti, T., Bicchiega, V., and Curatola, G. (2002). Effect of human Apo AIV against lipid peroxidation of very low density lipoproteins. Chem. Phys. Lipids 114, 45-54. https://doi.org/10.1016/S0009-3084(01)00201-8
  12. Fraenkal-Conrat, H. (1957). Methods for investigating essential groups for enzyme activity, Meth. Enzymol. 4, 247-269. https://doi.org/10.1016/0076-6879(57)04059-8
  13. Frank, P.G., and Marcel, Y.L. (2000). Apolipoprotein A-I: structurefunction relationships. J. Lipid Res. 41, 853-872.
  14. Goldberg, I.J., Scheraldi, C.A., Yacoub, L.K., Saxena, U., and Bisgaier, C.L. (1990). Lipoprotein ApoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV. J. Biol. Chem. 265, 4266-4272.
  15. Gomaraschi, M., Putt, W.E., Pozzi, S., Iametti, S., Barbiroli, A., Bonomi, F., Favari, E., Bernini, F., Franceschini, G., Talmud, P.J., et al. (2010). Structure and function of the apoA-IV T347S and Q360H common variants. Biochem. Biophys. Res. Commun. 393, 126-130 https://doi.org/10.1016/j.bbrc.2010.01.099
  16. Han, J.M., Jeong, T.S., Lee, W.S., Choi, I., and Cho, K.H. (2005). Structural and functional properties of V156K and A158E mutants of apolipoprotein A-I in the lipid-free and lipid-bound states. J. Lipid Res. 46, 589-596. https://doi.org/10.1194/jlr.M400468-JLR200
  17. Havel, R.J., Eder, H.A., and Bragdon, J.H. (1955). The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345-1353. https://doi.org/10.1172/JCI103182
  18. Heider, J.G., and Boyett, R.L. (1978). The picomole determination of free and total cholesterol in cells in culture. J. Lipid Res. 19, 514-518.
  19. Jonas, A. (1998). Regulation of lecithin cholesterol acyltransferase activity. Prog. Lipid Res. 37, 209-234. https://doi.org/10.1016/S0163-7827(98)00007-1
  20. Kim, J.Y., Kim, H., Jung, B.J., Kim, N.R., Park, J.E., and Chung, D.K. (2013). Lipoteichoic acid isolated from Lactobacillus plantarum suppresses LPS-mediated atherosclerotic plaque inflammation. Mol. Cells 35, 115-124. https://doi.org/10.1007/s10059-013-2190-3
  21. Li, X., Xu, M., Wang, F., Kohan, A.B., Haas, M.K., Yang, Q., Lou, D., Obici, S., Davidson, W.S., and Tso, P. (2014). Apolipoprotein A-IV Reduces Hepatic Gluconeogenesis through the Nuclear Receptor NR1D1. J. Biol. Chem. 289, 2396-2404. https://doi.org/10.1074/jbc.M113.511766
  22. Mahley, R.W., Innerarity, T.L., Rall, S.C., and Weisgraber, K.H. (1984). Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 25, 1277-1294.
  23. Main, L.A., Ohnishi, T., and Yokoyama, S. (1996). Activation of human plasma cholesteryl ester transfer protein by human apolipoprotein A-IV. Biochim. Biophys. Acta 1300, 17-24. https://doi.org/10.1016/0005-2760(95)00228-6
  24. Markwell, M.A., Haas, S.M., Bieber, L.L., and Tolbert, N.E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87, 206-210. https://doi.org/10.1016/0003-2697(78)90586-9
  25. Matz, C.E., and Jonas, A. (1982). Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J. Biol. Chem. 257, 4535-4540.
  26. McPherson, J.D., Shilton, B.H., and Walton, D.J. (1988). Role of fructose in glycation and cross-linking of proteins. Biochemistry 27, 1901-1907. https://doi.org/10.1021/bi00406a016
  27. Park, K.H., Jang, W., Kim, K.Y., Kim, J.R., and Cho, K.H. (2010). Fructated apolipoprotein A-I showed severe structural modifycation and loss of beneficial functions in lipid-free and lipid-bound state with acceleration of atherosclerosis and senescence. Biochem. Biophys. Res. Commun. 392, 295-300. https://doi.org/10.1016/j.bbrc.2009.12.179
  28. Park, J.Y., Park, J.H., Jang, W., Hwang, I.K., Kim, I.J., Kim, H.J., Cho, K.H., and Lee, S.T. (2012). Apolipoprotein A-IV is a novel substrate for matrix metalloproteinases. J. Biochem. 151, 291-298. https://doi.org/10.1093/jb/mvr137
  29. Park, K.H., Kim, J.M., and Cho, K.H. (2014). Elaidic acid (EA) generates dysfunctional high-density lipoproteins and consumption of EA exacerbates hyperlipidemia and fatty liver change in zebrafish. Mol. Nutr. Food Res. 58, 1537-1545. https://doi.org/10.1002/mnfr.201300955
  30. Pownall, H.J., Massey, J.B., Kusserow, S.K., and Gotto, A.M. (1978). Kinetics of lipid-protein interactions: interaction of apolipoprotein A-I from human plasma high density lipoproteins with phosphatidylcholines. Biochemistry 17, 1183-1188. https://doi.org/10.1021/bi00600a008
  31. Pearson, K., Saito, H., Woods, S.C., Lund-Katz, S., Tso, P., Phillips, M.C., and Davidson, W.S. (2004). Structure of human apolipoprotein A-IV: a distinct domain architecture among exchangeable apolipoproteins with potential functional implications. Biochemisty 43, 10719-10729. https://doi.org/10.1021/bi048978m
  32. Qin, X., Swertfeger, D.K., Zheng, S., Hui, D.Y., and Tso, P. (1998). Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation. Am. J. Physiol. 274, H1836-H1840
  33. Staros, J.V. (1982). N-hydroxysulfosuccinimide active esters: bis(Nhydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers. Biochemistry 21, 3950-3955. https://doi.org/10.1021/bi00260a008
  34. Steinmetz, A., and Utermann, G. (1985). Activation of lecithin: cholesterol acyltransferase by human apolipoprotein A-I. J. Biol. Chem. 260, 2258-2264.
  35. Tubb, M.R., Silva, R.A., Fang, J., Tso, P., and Davidson, W.S. (2008). A three-dimensional homology model of lipid-free apolipoprotein A-IV using cross-linking and mass spectrometry. J. Biol. Chem. 283, 17314-17323. https://doi.org/10.1074/jbc.M800036200
  36. Tubb, M.R., Smith, L.E., and Davidson, W.S. (2009). Purification of recombinant apolipoproteins A-I and A-IV and efficient affinity tag cleavage by tobacco etch virus protease. J. Lipid Res. 50, 1497-1504. https://doi.org/10.1194/jlr.D900003-JLR200
  37. VerHague, M.A., Cheng, D., Weinberg, R.B., and Shelness, G.S. (2013). Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion. Arterioscler. Thromb. Vasc. Biol. 33, 2501-2508. https://doi.org/10.1161/ATVBAHA.113.301948
  38. Weinberg, R.B. (2002). Apolipoprotein A-IV polymorphisms and diet-gene interactions. Curr. Opin. Lipidol. 13, 125-134. https://doi.org/10.1097/00041433-200204000-00003

Cited by

  1. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit vol.8, 2017, https://doi.org/10.1016/j.bbacli.2017.07.002
  2. Effects of the Particulate Matter2.5 (PM2.5) on Lipoprotein Metabolism, Uptake and Degradation, and Embryo Toxicity vol.38, pp.12, 2015, https://doi.org/10.14348/molcells.2015.0194
  3. Dietary fish oil supplementation alters liver gene expressions to protect against LPS-induced liver injury in weanling piglets vol.25, pp.1, 2019, https://doi.org/10.1177/1753425918821420
  4. Decreased serum apolipoprotein A4 as a potential peripheral biomarker for patients with schizophrenia vol.137, pp.None, 2021, https://doi.org/10.1016/j.jpsychires.2021.02.016
  5. High prevalence of APOA1/C3/A4/A5 alterations in luminal breast cancers among young women in East Asia vol.7, pp.1, 2015, https://doi.org/10.1038/s41523-021-00299-5