DOI QR코드

DOI QR Code

miR-335 Targets SIAH2 and Confers Sensitivity to Anti-Cancer Drugs by Increasing the Expression of HDAC3

  • Kim, Youngmi (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Kim, Hyuna (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Park, Deokbum (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Jeoung, Dooil (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
  • Received : 2015.02.23
  • Accepted : 2015.03.25
  • Published : 2015.06.30

Abstract

We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3'-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs.

Keywords

References

  1. Asuthkar, S., Velpula, K.K., Chetty, C., Gorantla, B., and Rao, JS. (2012). Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 3, 1439-1454. https://doi.org/10.18632/oncotarget.683
  2. Bardai, F.H., and D'Mello, S.R. (2011). Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J. Neurosci. 31, 1746-1751. https://doi.org/10.1523/JNEUROSCI.5704-10.2011
  3. Calin, G. A., and Croce, C. M. (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857-866. https://doi.org/10.1038/nrc1997
  4. Cao, J., Cai, J., Huang, D., Han, Q., Yang, Q., Li, T., Ding, H., and Wang, Z. (2013). miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. Oncol Rep. 30, 701- 706. https://doi.org/10.3892/or.2013.2482
  5. Chan, P., Moller, A., Liu, M.C., Sceneay, J.E., Wong, C.S., Waddell, N., Huang, K.T., Dobrovic, A., Millar, E.K., O'Toole, S.A., et al. (2011). The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and p53 expression. Breast Cancer Res. 13, R19. https://doi.org/10.1186/bcr2828
  6. Chen, L.F., Fischle, W., Verdin, E., and Greene, W.C. (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293, 653-1657. https://doi.org/10.1126/science.1062374
  7. Chen, Z., Ma, T., Huang, C., Zhang, L., Lv, X., Xu, T., Hu, T., and Li, J. (2013). miR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/${\beta}$-catenin pathway in hepatocellular carcinoma cells. Cell. Signal. 25, 2693-2701. https://doi.org/10.1016/j.cellsig.2013.08.032
  8. Cheng, W., Liu, T., Wan, X., Gao, Y., and Wang, H. (2012). MicroRNA- 199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 279, 2047-2059. https://doi.org/10.1111/j.1742-4658.2012.08589.x
  9. Christian, P.A., Fiandalo, M.V., and Schwarze, S.R. (2011). Possible role of death receptor-mediated apoptosis by the E3 ubiquitin ligases Siah2 and POSH. Mol. Cancer 10, 57.
  10. Dimitrova, Y.N., Li, J., Lee, Y.T., Rios-Esteves, J., Friedman, D.B., Choi, H.J., Weis, W.I., Wang, C.Y., and Chazin, W.J. (2010). Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J. Biol. Chem. 285, 13507-13516. https://doi.org/10.1074/jbc.M109.049411
  11. Dohi, O., Yasui, K., Gen, Y., Takada, H., Endo, M., Tsuji, K., Konishi, C., Yamada, N., Mitsuyoshi, H., Yagi, N., et al. (2013). Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int. J. Oncol. 42, 411-418. https://doi.org/10.3892/ijo.2012.1724
  12. Gao, Y., Fan, X., Li, W., Ping, W., Deng, Y., and Fu, X. (2014). miR- 138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem. Biophys. Res. Commun. 446, 179-186. https://doi.org/10.1016/j.bbrc.2014.02.073
  13. Grishina, I., Debus, K., Garcia-Limones, C., Schneider, C., Shresta, A., Garcia, C., Calzado, M.A., and Schmitz, M.L. (2012). SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation. Biochim. Biophys. Acta 1823, 2287-2296. https://doi.org/10.1016/j.bbamcr.2012.09.011
  14. Hsieh, S.C., Kuo, S.N., Zheng, Y.H., Tsai, M.H., Lin, Y.S., and Lin, J.H. (2013). The E3 ubiquitin ligase SIAH2 is a prosurvival factor overexpressed in oral cancer. Anticancer Res. 33, 4965-4973.
  15. Katakowski, M., Zheng, X., Jiang, F., Rogers, T., Szalad, A., and Chopp, M. (2010). MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Invest. 28, 1024-1030. https://doi.org/10.3109/07357907.2010.512596
  16. Kim, H.C., Choi, C., Choi, H.K., Kang, H.B., Kim, M.J., Lee, Y.H., Lee, O.H., Lee, J., Kim, Y.J., Jun, W., et al. (2010). HDAC3 selectively represses CREB3-mediated transcription and migration of metastatic breast cancer cells. Cell. Mol. Life. Sci. 67, 3499-3510. https://doi.org/10.1007/s00018-010-0388-5
  17. Kim, Y., Park, D., Kim, H., Choi, M., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung D. (2013). miR-200b and cancer/testis antigen CAGE form a feedback loop to regulate the invasion and tumorigenic and angiogenic responses of a cancer cell line to microtubule-targeting drugs. J. Biol. Chem. 288, 36502-36518. https://doi.org/10.1074/jbc.M113.502047
  18. Kim, Y., Kim, H., Park, H., Park, D., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung, D. (2014). miR-326-histone deacetylase-3 feedback loop regulates the invasion and tumorigenic and angiogenic response to anti-cancer drugs. J. Biol. Chem. 289, 28019-28039. https://doi.org/10.1074/jbc.M114.578229
  19. Levy, C., Khaled, M., Iliopoulos, D., Janas, M.M., Schubert, S., Pinner, S., Chen, P.H., Li, S., Fletcher, A.L., Yokoyama, S., et al. (2010). Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol. Cell 40, 841-849. https://doi.org/10.1016/j.molcel.2010.11.020
  20. Li, J., Wang, J., Wang, J., Nawaz, Z., Liu, J.M., Qin, J., and Wong, J. (2000). Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 19, 4342- 4350. https://doi.org/10.1093/emboj/19.16.4342
  21. Liang, Z., Wu, H., Xia, J., Li, Y., Zhang, Y., Huang, K., Wagar, N., Yoon, Y., Cho, H.T., Scala, S., et al. (2010). Involvement of miR- 326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem. Pharmacol. 79, 817-824. https://doi.org/10.1016/j.bcp.2009.10.017
  22. Liao, Y., Zhang, M., and Lonnerdal, B. (2013). Growth factor TGF-${\beta}$ induces intestinal epithelial cell (IEC-6) differentiation: miR-146b as a regulatory component in the negative feedback loop. Genes Nutr. 8, 69-78. https://doi.org/10.1007/s12263-012-0297-3
  23. Longworth, M.S., and Laimins, L.A. (2006). Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src. Oncogene 25, 4495-4500. https://doi.org/10.1038/sj.onc.1209473
  24. Lynch, J., Fay, J., Meehan, M., Bryan, K., Watters, K.M., Murphy, D.M., Stallings, R.L. (2012). MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-${\beta}$ signalling pathway. Carcinogenesis 33, 976-985. https://doi.org/10.1093/carcin/bgs114
  25. Ma, J., Xue, Y., Liu, W., Yue, C., Bi, F., Xu, J., Zhang, J., Li, Y., Zhong, C., and Chen, Y. (2013). Role of activated Rac1/Cdc42 in mediating endothelial cell proliferation and tumor angiogenesis in breast cancer. PLoS One 8, e66275. https://doi.org/10.1371/journal.pone.0066275
  26. Ma, B., Chen, Y., Chen, L., Cheng, H., Mu, C., Li, J., Gao, R., Zhou, C., Cao, L., Liu, J., et al. (2015). Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 17, 95-103.
  27. Maftouh, M., Avan, A., Funel, N., Frampton, A.E., Fiuji, H., Pelliccioni, S., Castellano, L., Galla, V., Peters, G.J., and Giovannetti, E. (2014). miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells. Nucleosides Nucleotides Nucleic Acids 33, 384-393. https://doi.org/10.1080/15257770.2014.891741
  28. Mahlknecht, U., Emiliani, S., Najfeld, V., Young, S., and Verdin, E. (1999). Genomic organization and chromosomal localization of the human histone deacetylase 3 gene. Genomics 56, 197-202. https://doi.org/10.1006/geno.1998.5645
  29. Mahlknecht, U., Will, J., Varin, A., Hoelzer, D., and Herbein, G. (2004). Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. J. Immunol. 173, 3979-3990. https://doi.org/10.4049/jimmunol.173.6.3979
  30. Martin, N.T., Nakamura, K., Davies, R., Nahas, S.A., Brown, C., Tunuguntla, R., Gatti, R.A., and Hu, H. (2013). ATM-dependent MiR-335 targets CtIP and modulates the DNA damage response. PLoS Genet. 9, e1003505. https://doi.org/10.1371/journal.pgen.1003505
  31. Mazar, J., DeYoung, K., Khaitan, D., Meister, E., Almodovar, A., Goydos, J., Ray, A., and Perera, R.J. (2010). The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS One 5, e13779. https://doi.org/10.1371/journal.pone.0013779
  32. Mosquera, J., Armisen, R., Zhao, H., Rojas, D.A., Maldonado, E., Tapia, J.C., Colombo, A., Hayman, M.J., and Marcelain, K. (2011). Identification of Ski as a target for Aurora A kinase. Biochem. Biophys. Res. Commun. 409, 539-543. https://doi.org/10.1016/j.bbrc.2011.05.040
  33. Nakayama, K., Frew, I.J., Hagensen, M., Skals, M., Habelhah, H., Bhoumik, A., Kadoya, T., Erdjument-Bromage, H., Tempst, P., Frappell, P.B., et al. (2014). Siah2 regulates stability of prolylhydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117, 941-952.
  34. Park, D., Park, H., Kim, Y., Kim, H., and Jeoung D. (2014a). HDAC3 acts as a negative regulator of angiogenesis. BMB Rep. 47, 227-232. https://doi.org/10.5483/BMBRep.2014.47.4.128
  35. Park, H., Kim, Y., Park, D., and Jeoung, D. (2014b). Nuclear localization signal domain of HDAC3 is necessary and sufficient for the expression regulation of MDR1. BMB Rep. 47, 342-347. https://doi.org/10.5483/BMBRep.2014.47.6.169
  36. Park, H., Huang, X., Lu, C., Cairo, M.S., and Zhou, X. (2015). MicroRNA-146a and MicroRNA-146b Regulate Human Dendritic Cell Apoptosis and Cytokine Production by Targeting TRAF6 and IRAK1 Proteins. J. Biol. Chem. 290, 2831-2841. https://doi.org/10.1074/jbc.M114.591420
  37. Pietschmann, K, Buchwald, M., Muller, S., Knauer, S.K., Kogl, M., Heinzel, T., and Kramer, O.H. (2012). Differential regulation of PML-RAR${\alpha}$ stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. Int. J. Biochem. Cell. Biol. 44, 132-138. https://doi.org/10.1016/j.biocel.2011.10.008
  38. Png, K.J., Yoshida, M., Zhang, X.H., Shu, W., Lee, H., Rimner, A., Chan, T.A., Comen, E., Andrade, V.P., Kim, S.W., et al. (2011). MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev. 25, 226-231. https://doi.org/10.1101/gad.1974211
  39. Qi, J., Nakayama, K., Gaitonde, S., Goydos, J.S., Krajewski, S., Eroshkin, A., Bar-Sagi, D., Bowtell, D., and Ronai, Z. (2008). The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 105, 16713-16718. https://doi.org/10.1073/pnas.0804063105
  40. Sakurai, E., Maesawa, C., Shibazaki, M., Yasuhira, S., Oikawa, H., Sato, M., Tsunoda, K., Ishikawa, Y., Watanabe, A., Takahashi, K., et al. (2011). Downregulation of microRNA-211 is involved in expression of preferentially expressed antigen of melanoma in melanoma cells. Int. J. Oncol. 39, 665-672.
  41. Sarkar, T.R., Sharan, S., Wang, J., Pawar, S.A., Cantwell, C.A., Johnson, P.F., Morrison, D.K., Wang, J.M., and Sterneck, E. (2012). Identification of a Src tyrosine kinase/SIAH2 E3 ubiquitin ligase pathway that regulates $C/EBP\delta$ expression and contributes to transformation of breast tumor cells. Mol. Cell. Biol. 32, 320-332. https://doi.org/10.1128/MCB.05790-11
  42. Scarola, M., Schoeftner, S., Schneider, C., and Benetti, R. (2010). miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res. 70, 6925-6933. https://doi.org/10.1158/0008-5472.CAN-10-0141
  43. Shah, M., Stebbins, J.L., Dewing, A., Qi, J., Pellecchia, M., and Ronai, Z.A. (2009). Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis. Pigment Cell Melanoma Res. 22, 799-808. https://doi.org/10.1111/j.1755-148X.2009.00628.x
  44. Shan, X., Fu, Y.S., Aziz, F., Wang, X.Q., Yan, Q., and Liu, J.W. (2014). Ginsenoside Rg3 Inhibits Melanoma Cell Proliferation through Down-Regulation of Histone Deacetylase 3 (HDAC3) and Increase of p53 Acetylation. PLoS One 9, e115-401.
  45. Sorrentino, A., Liu, C.G., Addario, A., Peschle, C., Scambia, G., and Ferlini, C. (2008). Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol. Oncol. 111, 478-486.
  46. Tome, M., Lopez-Romero, P., Albo, C., Sepulveda, J.C., Fernandez-Gutierrez, B., Dopazo, A., Bernad, A., and Gonzalez, M.A. (2011). miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 18, 985-995. https://doi.org/10.1038/cdd.2010.167
  47. Uo, T., Veenstra, T.D., and Morrison, R.S. (2009). Histone deacetylase inhibitors prevent p53-dependent and p53- independent Bax-mediated neuronal apoptosis through two distinct mechanisms. J. Neurosci. 29, 2824-2832. https://doi.org/10.1523/JNEUROSCI.6186-08.2009
  48. Wang, H., Li, M., Zhang, R., Wang, Y., Zang, W., Ma, Y., Zhao, G., and Zhang, G. (2013). Effect of miR-335 upregulation on the apoptosis and invasion of lung cancer cell A549 and H1299. Tumour Biol. 34, 3101-3109. https://doi.org/10.1007/s13277-013-0878-9
  49. Wong, C.S., Sceneay, J., House, C.M., Halse, H.M., Liu, M.C., George, J., Hunnam, T.C., Parker, B.S., Haviv, I., Ronai, Z., et al. (2012). Vascular normalization by loss of Siah2 results in increased chemotherapeutic efficacy. Cancer Res. 72, 1694-1704. https://doi.org/10.1158/0008-5472.CAN-11-3310
  50. Xiong, S.W., Lin, T.X., Xu, K.W., Dong, W., Ling, X.H., Jiang, F.N., Chen, G., Zhong, W.D., and Huang, J. (2013). MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer. Pathol. Oncol. Res. 19, 529-537. https://doi.org/10.1007/s12253-013-9613-5
  51. Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., Jiang, L., Sun, Z., Miao, Z., and Xu, H. (2012). MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 31, 1398-1407. https://doi.org/10.1038/onc.2011.340
  52. Xu, X., Chen, H., Lin, Y., Hu, Z., Mao, Y., Wu, J., Xu, X., Zhu, Y., Li, S., Zheng, X., and Xie, L. (2013). MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met. Mol. Cells 36, 62-68. https://doi.org/10.1007/s10059-013-0044-7
  53. Yan, Z., Xiong, Y., Xu, W., Gao, J., Cheng, Y., Wang, Z., Chen, F., and Zheng, G. (2012). Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS One 7, e40037. https://doi.org/10.1371/journal.pone.0040037
  54. Yang, H., Tang, Y., Guo, W., Du, Y., Wang, Y., Li, P., Zang, W., Yin, X., Wang, H., Chu, H., et al. (2014). Up-regulation of microRNA- 138 induce radiosensitization in lung cancer cells. Tumour Biol. 35, 6557-6565. https://doi.org/10.1007/s13277-014-1879-z
  55. Yi, J., Huang, X., Yang, Y., Zhu, W.G., Gu, W., and Luo, J. (2014). Regulation of histone acetyltransferase TIP60 function by histone deacetylase 3. J. Biol. Chem. 289, 33878-33886. https://doi.org/10.1074/jbc.M114.575266
  56. Zhang, J., Kalkum, M., Chait, B.T., and Roeder, R.G. (2002). The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol. Cell 9, 611-623. https://doi.org/10.1016/S1097-2765(02)00468-9
  57. Zhang, X., Chen, X., Lin, J., Lwin, T., Wright, G., Moscinski, L.C., Dalton, W.S., Seto, E., Wright, K., Sotomayor, E., et al. (2012). Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 31, 3002-3008. https://doi.org/10.1038/onc.2011.470
  58. Zhao, H.L., Ueki, N., and Hayman, M.J. (2010). The Ski protein negatively regulates SIAH2-mediated HDAC3 degradation. Biochem. Biophys. Res. Commun. 399, 623-628 https://doi.org/10.1016/j.bbrc.2010.07.127

Cited by

  1. WW domain binding protein 5 induces multidrug resistance of small cell lung cancer under the regulation of miR-335 through the Hippo pathway vol.115, pp.2, 2016, https://doi.org/10.1038/bjc.2016.186
  2. Role of epigenetics-microRNA axis in drug resistance of multiple myeloma vol.10, pp.1, 2017, https://doi.org/10.1186/s13045-017-0492-1
  3. Histone Deacetylase-3/CAGE Axis Targets EGFR Signaling and Regulates the Response to Anti-Cancer Drugs vol.39, pp.3, 2016, https://doi.org/10.14348/molcells.2016.2244
  4. Simultaneous analysis of miRNA-mRNA in human meningiomas by integrating transcriptome: A relationship between PTX3 and miR-29c vol.17, pp.1, 2017, https://doi.org/10.1186/s12885-017-3198-4
  5. MicroRNA-139-5p regulates proliferation of hematopoietic progenitors and is repressed during BCR-ABL-mediated leukemogenesis vol.128, pp.17, 2016, https://doi.org/10.1182/blood-2016-02-702464
  6. Down-Regulation of MicroRNA-210 Confers Sensitivity towards 1’S-1’-Acetoxychavicol Acetate (ACA) in Cervical Cancer Cells by Targeting SMAD4 vol.40, pp.4, 2017, https://doi.org/10.14348/molcells.2017.2285
  7. DDX53 Regulates Cancer Stem Cell-Like Properties by Binding to SOX-2 vol.40, pp.5, 2017, https://doi.org/10.14348/molcells.2017.0001
  8. N-peptide of vMIP-II reverses paclitaxel-resistance by regulating miRNA-335 in breast cancer vol.51, pp.3, 2017, https://doi.org/10.3892/ijo.2017.4076
  9. miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2 vol.7, pp.9, 2015, https://doi.org/10.18632/oncotarget.7185
  10. The pentapeptide Gly-Thr-Gly-Lys-Thr confers sensitivity to anti-cancer drugs by inhibition of CAGE binding to GSK3β and decreasing the expression of cyclinD1 vol.8, pp.8, 2015, https://doi.org/10.18632/oncotarget.14621
  11. Inferences of individual drug responses across diverse cancer types using a novel competing endogenous RNA network vol.12, pp.9, 2018, https://doi.org/10.1002/1878-0261.12181
  12. Role of HDAC3-miRNA-CAGE Network in Anti-Cancer Drug-Resistance vol.20, pp.1, 2015, https://doi.org/10.3390/ijms20010051
  13. MicroRNA-335 / ID4 dysregulation predicts clinical outcome and facilitates leukemogenesis by activating PI3K/Akt signaling pathway in acute myeloid leukemia vol.11, pp.10, 2019, https://doi.org/10.18632/aging.101991
  14. Epigenetic silencing of miR-335 induces migration by targeting insulin-like growth factor-1 receptor in multiple myeloma vol.60, pp.13, 2019, https://doi.org/10.1080/10428194.2019.1627534
  15. miR-146b-5p regulates bone marrow mesenchymal stem cell differentiation by SIAH2/PPARγ in aplastic anemia children and benzene-induced aplastic anemia mouse model vol.19, pp.19, 2015, https://doi.org/10.1080/15384101.2020.1807081
  16. A Peptide-Nucleic Acid Targeting miR-335-5p Enhances Expression of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene with the Possible Involvement of the CFTR Scaffolding Protein NHERF1 vol.9, pp.2, 2015, https://doi.org/10.3390/biomedicines9020117
  17. The role of Siah2 in tumorigenesis and cancer therapy vol.809, pp.None, 2015, https://doi.org/10.1016/j.gene.2021.146028