DOI QR코드

DOI QR Code

A Study on Heat Transfer and Pressure Drop Characteristics of Staggered Tube Banks using CFD Analysis

CFD해석을 통한 엇갈린형 관군의 열전달 및 압력강하 특성에 관한 연구

  • Zhao, Liu (Dept. of Mechanical Engineering, Graduate School, Gachon Univ.) ;
  • Yoon, Jun-Kyu (Dept. of Mechanical Engineering, Gachon Univ.)
  • 유소 (가천대학교 대학원 기계공학과) ;
  • 윤준규 (가천대학교 기계공학과)
  • Received : 2015.01.19
  • Accepted : 2015.05.07
  • Published : 2015.05.31

Abstract

In this study, the characteristics of heat transfer and pressure drop was theoretically analyzed by changing longitudinal pitch, bump phase, location of vortex generator about the staggered tube banks by applying SST (Shear Stress Transport) turbulence model of ANSYS FLUENT v.14. Before carrying out CFD (Computational Fluid Dynamics) analysis, It is presumed that the boundary condition is the tube surface temperature of 363 K, the inlet air temperature of 313 K and the inlet air velocity of 5-10 m/s. The results indicated that the heat transfer coefficient is not affected by the longitudinal pitch and the bump phase of circle type was more appropriate than serrated type in the characteristics of heat transfer and pressure drop. Additionally, in case of vortex generator location, the heat transfer characteristics showed that forward location of tube was more favorable 4.6% than backward location.

본 연구에서는 엇갈린형 관군에 대해 ANSYS FLUENT v.14의 SST 난류모델을 적용하여 가로피치, 튜브표면, 와류발생기위치 등의 변화에 따른 열전달 및 압력강하 특성을 이론적으로 해석하였다. CFD 해석시 튜브표면의 온도는 363 K, 입구측 공기온도는 313 K이고 입구측 속도는 5 m/s에서 10 m/s까지 가정하였다. 그 해석결과로서 열전달계수는 가로피치에 대한 영향은 큰 차이가 없었고, 튜브표면의 돌기형상은 열전달 및 압력강하 특성에서 원형이 톱니형보다 적절하게 나타내었으며, 와류발생기의 설치 경우에는 열전달특성이 튜브의 전방부 위치가 후방부 위치보다 약 4.6% 정도로 우수함을 보였다.

Keywords

References

  1. Y. D. Jun, M. H. Nam, B. S. Koo, K. B. Lee "Numerical Simulation of Heat Transfer Characteristics of Tube Banks with Non-conventional Arrangement ", The Society of Air-Conditioning and Refrigeration, pp. 1129-1134, 2009.
  2. Chapman, A. J, "Fundamentals of Heat Transfer", McMillan Publishing Co., pp. 350-353, 1987.
  3. Launder, B. E. and Massey, T. H., "The Numerical Prediction of Viscous Flow and Heat Transfer in Tube Banks", Journal of Heat Transfer, Vol. 100, pp. 565-571, 1978. DOI: http://dx.doi.org/10.1115/1.3450858
  4. Faghri, M., Rao, N., "Numerical Computation of Flow and Heat Transfer in Finned and Unfinned tube banks", International Journal of Heat and Mass Transfer, Vol. 30, No. 2, pp. 363-372, 1987. DOI: http://dx.doi.org/10.1016/0017-9310(87)90124-4
  5. Fujii, M. Fujii, T., Nagata T., "Numerical Heat Transfer", Vol. 7, pp. 89-102, 1984. DOI: http://dx.doi.org/10.1080/10407798408546958
  6. K. W. Park, D. H. Choi, K. S. Lee, K. H. Chang, "Design Optimization of Plate Heat Exchanger with Staggered Pin Arrays", The Korean Society of Mechanical Engineers, pp. 1441-1446, 2003.
  7. A. T. Cho, K. Y. Kim, "Analysis of Turbulent Heat Transfer from Staggered Pin-Fin arrays with Diamond Shaped Elements at Various Geometrical Configurations", Korean Society for Computational Fluids Engineering, Vol. 13, No. 2, pp. 20-25, 2008.
  8. G. H. Lee, Y. S. Bang, S. W. Woo, "Numerical Analysis of Turbulent Flow in a Staggered Tube Bundle by Applying CFD Best Practice Guideline", The Korean Society of Mechanical Engineers, pp. 2900-2905, 2012.
  9. S. W. Hwang, J. H. Jeong, "Flow Analysis of Heat Exchanger with Delta Winglet Vortex Generators on CFD", The Society of Air-Conditioning and Refrigeration, pp.1166 -1171, 2009.
  10. C. H. Jun, G. H. Jang, "Heat Transfer", Bosunggak Pub., pp. 224-233, 2008.
  11. Z. Liu and J. K. Yoon, "A study on heat transfer and pressure drop characteristics of plain fin-tube heat exchanger using CFD analysis", Journal of the Korean Society of Marine Engineering, Vol. 38, No. 6 pp. 615-624, 2014. DOI: http://dx.doi.org/10.5916/jkosme.2014.38.6.615