DOI QR코드

DOI QR Code

Small Punch Test of TRIP Steel Charged with Hydrogen under Different Electrolyte Condition

다른 전해질분위기에서 수소주입시킨 TRIP강의 SP시험

  • Kim, Kwang-Sig (Dept. of Materials Science & Engineering, Graduate School of Industry & Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kwang-Hyun (Dept. of Materials Science & Engineering, Graduate School of Industry & Engineering, Seoul National University of Science & Technology) ;
  • Park, Jae-Woo (Dept. of New Energy Engineering, Graduate School of Energy & Environment, Seoul National University of Science & Technology) ;
  • Kang, Kae-Myung (Dept. of Material Science & Engineering, Seoul National University of Science & Technology)
  • 김광식 (서울과학기술대학교 산업대학원 재료공학과) ;
  • 유광현 (서울과학기술대학교 산업대학원 재료공학과) ;
  • 박재우 (서울과학기술대학교 에너지환경대학원 신에너지공학과) ;
  • 강계명 (서울과학기술대학교 신소재공학과)
  • Received : 2015.01.12
  • Accepted : 2015.02.25
  • Published : 2015.02.28

Abstract

In order to evaluate the degree of hydrogen embrittlement of TRIP steels charged with hydrogen according to varying the current density and the charging time under acid and alkaline electrolyte conditions were tested by small punch test. The results of SP test showed that the degree of hydrogen embrittlement at acid electrolyte condition was more effective factor compared to that of alkaline electrolyte condition. Therefore, all of the charging time and the charging current density were at the condition of acid electrolyte appeared as the main factor of the degree of hydrogen embrittlement in the condition of acid electrolyte. But, it was considered that the charging time compared to the charging current density at the condition of alkaline electrolyte was more effective factor to raise the degree of hydrogen embrittlement.

TRIP강의 수소에 의한 취성화정도를 확인하기 위하여 산성과 알칼리성 전해질 분위기 하에서 전류밀도와 주입시간을 달리하여 수소를 강제주입시킨 후 sp시험으로 평가하고자 하였다. SP시험결과 산성 전해질 분위기가 알칼리성 전해질 분위기에 비해 수소 취성화가 더욱 민감하게 반응하는 것으로 조사되었다. 또한 산성 전해질은 주입시간과 전류밀도가 수소취성화에 영향을 미치는 인자로 확인되었으며, 알칼리성 전해질은 주입시간이 전류 밀도보다 수소 취성화를 촉진하는 요소로 조사되었다.

Keywords

References

  1. H. Hashimoto, K. Kibe, Y. Nouno, T. Sasaki, Toyota Tech. Rev., 52 (2002) 1.
  2. M. Sarwar, R. Priestner, J. Mater. Sci., 31 (1996) 2091. https://doi.org/10.1007/BF00356631
  3. K. M. Kang, J. W. Park, Kor. J. Mater. Res., 20 (2010) 581. https://doi.org/10.3740/MRSK.2010.20.11.581
  4. J. Watanabe, T. Takai, M. Nagumo, J. Iron Steel Inst. Jpn., 82 (1996) 947.
  5. G. Katano, K. Ueyama, M. Mori, J. Mater. Sci., 36 (2001) 2277. https://doi.org/10.1023/A:1017568706014
  6. H. S. Kim, K. M. Kang, Kor. Inst. Surf. Eng., 45 (2012) 284. https://doi.org/10.5695/JKISE.2012.45.6.284
  7. D. P. Dantovich, S. Floreen, Metall. Trans., 4A (1973) 2627.
  8. C. E. Price, R. G. Norman, Acta Metall., 35 (1978) 1639.
  9. J. U. Choi, J. W. Park, K. M. Kang, Kor. J. Mater. Res., 21, (2011) 581. https://doi.org/10.3740/MRSK.2011.21.11.581
  10. J. W. Park, K. M. Kang, Kor. J. Mater. Res., 22, (2012) 29. https://doi.org/10.3740/MRSK.2012.22.1.029
  11. J. U. Choi, K. G. Han, J. W. Park, K. M. Kang, KIGAS, 18 (2014) 40.
  12. J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 45 (2012) 212. https://doi.org/10.5695/JKISE.2012.45.5.212
  13. J. U. Choi, J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 46 (2013) 42. https://doi.org/10.5695/JKISE.2013.46.1.042
  14. K. M. Kang, J. U. Choi, J. W. Park, Kor. Inst. Surf. Eng., 46 (2013) 48. https://doi.org/10.5695/JKISE.2013.46.1.048
  15. J. U. Choi, J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 46 (2013) 126. https://doi.org/10.5695/JKISE.2013.46.3.126
  16. Y. C. Choi, J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 46 (2013) 229. https://doi.org/10.5695/JKISE.2013.46.5.229
  17. J. W. Park, K. M. Kang, Kor. Inst. Sur. Eng., 47 (2014) 257. https://doi.org/10.5695/JKISE.2014.47.5.257
  18. L. Marchetti, E. Herms, P. Laghoutaris, J. Chene, Int. J. Hydrogen Energy, 36, (2011) 1588.
  19. J. U. Choi, J. W. Park, K. M. Kang, Kor. Inst. Surf. Eng., 47 (2014) 33. https://doi.org/10.5695/JKISE.2014.47.1.033