DOI QR코드

DOI QR Code

Characterization of Chlorella Vulgaris Mutants Generated by EMS (Ethyl Methane Sulphonate)

EMS (Ethyl Methane Sulphonate) 처리에 의한 Chlorella Vulgaris 변이주 생성 및 특성 분석

  • Kim, Ok Ju (Chloland Co. Ltd.) ;
  • Lee, Jae-Hwa (Department of Pharmaceutical Engineering, College of Medical & Life Science, Silla University)
  • 김옥주 ((주) 클로랜드) ;
  • 이재화 (신라대학교 의생명과학대학 제약공학)
  • Received : 2015.01.19
  • Accepted : 2015.03.17
  • Published : 2015.06.10

Abstract

Chlorella vulgaris (C. vulgaris) is a spherical unicellular green algae and the diameter ranges from 2 to $10{\mu}m$. C. vulgaris possess nutritional excellence because it contains various functional materials including high protein contents, chlorophyll, carotenoid, and chlorella growth factor (CGF). In order to study effects of mutagen, ethyl methane sulphonate (EMS) was used as a chemical mutagen and some mutants could be obtained. We named 2 type mutants as E14 and E24 obtained after treating with EMS. In the cell growth, growth patterns of mutants were similar to those of the wild type. Chlorophyll contents of E14 and E24 increased up to 99 and 52%, respectively compared to those of the wild type. The carotenoid content of E14 increased to 7%, but the value of E24 decreased 5% compared to that of the wild type. For the lipid contents E24 increased to 23%, while E14 decreased 12% when compared to those of the wild type. As a result, there is no difference between the mutants and wild type in the cell growth, but considering that mutants contains more physiological materials than those of the wild type, we can expect the mutants of C. vulgaris could be used as important high added-value materials.

Chlorella vulgaris는 녹조류로 직경 $2{\sim}10{\mu}m$의 구형 단세포식물로 단백질, 클로로필, 카로티노이드, 클로렐라 성장촉진인자(CGF)와 같은 기능성물질을 함유하고 있는 것으로 밝혀짐에 따라 영양학적 우수성이 확인되었으며, 간 기능 개선 및 면역 기능강화와 같은 기능성이 보고되고 있다. 본 연구에서, C. vulgaris에 화학적 돌연변이원인 EMS (ethyl methane sulphonate) 처리에 따른 세포 성장, 색소 및 지질 함량에 미치는 영향을 살펴보았고, 그에 따른 변이주를 확보하였다. C. vulgaris에 EMS를 처리하여 얻어진 변이주를 E14, E24로 명명하였다. 세포 성장의 경우 mutant의 성장 패턴이 Wild Type (WT) 균주의 성장 패턴과 비슷하였다. E14, E24의 클로로필 함량은 각각 99, 52% 증가하였고, 카로티노이드 함량은 E14는 7% 증가, E24의 경우 5% 감소하였다. 지질 함량의 경우 WT에 비해 E24의 경우 23% 증가하였고, E14는 12% 감소하였다. 이 결과, EMS에 의해 유도된 C. vulgaris 돌연변이주는 세포 성장은 차이를 보이지 않지만 클로로필과 카로티노이드, 지질 함량을 많이 축적하여 고부가가치 소재로 이용될 것으로 기대된다.

Keywords

References

  1. D. S. Joo, C. K. jung, C. H. Lee, and S. Y. Cho, Content of phycocyanins and growth of spirulina platensis with culture conditions, J. Korean Fish. Soc., 33, 475-481 (2000).
  2. S. D. Varfolomeev and L. A. Wasserman, Microalgae as source of biofuel, food, fodder, and medicines, Appl. Biochem. Microbiol., 47, 789-807 (2011). https://doi.org/10.1134/S0003683811090079
  3. R. A. Kay and L. L. Barton, Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr., 30, 555-573 (1991). https://doi.org/10.1080/10408399109527556
  4. S. H. Ohh, A study on the change up chlorophyll due to the fermentation of Kimchi, Journal of the Korean Professional Engineers Association, 18, 12-22(1985).
  5. S. C. Hong, J. H. Han, J. Lee, Y. K. Ahn, E. Y. Yang, S. Y. Chae, S. Kim, and J. B. Yoon, A simple and Fast Microplate Method for Analysis of Caroteniods content in Chili Pepper(Capsicum annuum L.), Kor. J. Hort. Sci. Technol., 31, 807-812 (2013).
  6. M. Atsushi, What is chlorella. Food Ind., 9, 122-138 (1999).
  7. Z.-Y. Liu, G.-C. Wang, and B.-C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717-4722 (2008). https://doi.org/10.1016/j.biortech.2007.09.073
  8. Y. J. Kim, S. Jeong, S. Kwon, and M. K. Kim, Effect of Chlorella vulgaris intake on antioxidative capacity in rats oxidatively stressed with dietary cadmium, Food Sci. Biotechnol., 18, 1055-1062 (2009).
  9. J.-Y. Shim, H.-S. Shin, J.-G. Han, H.-S. Park, B.-L. Lim K-W. Chung, and A.-S. Om, Protectice effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats, J. Med. Food., 11, 479-485 (2008). https://doi.org/10.1089/jmf.2007.0075
  10. T. Hasegwa, K. Ito, S. Kumamoto, Y. Ando, A. Yamada, K. Nomoto, and Y. Yasunobu, Oral administration of a hot water extracts of chlorella vulgaris reduces IgE production against milk casein in mice, Int. J. Immunophamacol., 21, 311-323 (1999). https://doi.org/10.1016/S0192-0561(99)00013-2
  11. S. Guzman, A. Gato, M. Lamela, M. Freire-Garabal, and J. M. Calleja, Anti-inflammatory anf immunomodulatory activities of polysaccharide from chlorella stigmatophora and phaeodactylum tricornutu,. Phytother. Res., 17, 665-670 (2003). https://doi.org/10.1002/ptr.1227
  12. S. Shibata, Y. Natori, T. Nishihara, K. Tomisaka, K. Matsumoto, H. Sansawa, and V. C. Nguyen, Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes, J. Nutr. Sci. Vitaminol., 49, 334-339 (2003). https://doi.org/10.3177/jnsv.49.334
  13. M. Okudo, T. Hasegawa, M. Sonoda, T. Okabe and M. Tanaka, The effects of Chlorella on the level of cholesterol in serum and liver, Jap. J. Nutr., 33, 3-8 (1975). https://doi.org/10.5264/eiyogakuzashi.33.3
  14. M. K. Park, J. M. Lee, C. H. Park, and M. J. In, Quality characteristics of sulgidduk containing Chlorella powder, J. Korean Soc. Food Sci. Nutr., 31, 225-229 (2002). https://doi.org/10.3746/jkfn.2002.31.2.225
  15. B. H. Jo and H. J. Cha, Biodiesel production using microalgal marine biomass, Kor. Soc. Biotechnol. Bioeng. J., 25, 109 (2010).
  16. K. D. Sung, J. H. Ann, J. Y. Lee, S. J. Ohh, and H. Y. Lee, Kinetics of cultivating photosynthetic microalga, spirulina platensis in an outdoor photobioreactor, Kor. Soc. Biotechnol. Bioeng. J., 10, 401 (1995).
  17. S.-J. Choi, Y.-H. Kim, A. Kim, and J.-H. Lee, Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition, Appl. Chem. Eng., 24, 628-632(2013). https://doi.org/10.14478/ace.2013.1085
  18. H.-J. Park, Y.-H. Kim, and J.-H. Lee, Caracterization of arthrospira platensis mutants generated by UV-B irradiation, Appl. Chem. Eng., 23, 496-500 (2012).
  19. B. S. Kanath, R. Vidhyavathi, R. Sarada, and G. A. Ravishankar, Enhancement of carotenoids by mutation and stress induced carotenogenic genes in haematococcus pluvialis mutants, Bioresour. Technol., 99, 8667-8673 (2008). https://doi.org/10.1016/j.biortech.2008.04.013
  20. H.-J. Park, E.-J. Jin, T.-M. Jung, and J.-H. Lee, Optimal culture conditions for photosynthetic microalgae Nannochloropsis oculata, Appl. Chem. Eng., 21, 659-663 (2010).
  21. Y.-H. Kim and J.-H Lee, Isolation of arthrospira platensis mutants producing high lipid and phycobiliproteins, Kor. Soc. Biotechnol. Bioeng. J., 27, 172-176 (2012).
  22. S. P. Shukla and A. K. Kashyap, An assessment of biopotential of three cyanobacterial isolates from antarctic for carotenoid production, Indian J. Biochem. Biophys., 40, 362-366 (2003).
  23. W. Chen, M. Sommerfeld, and Q. Hu, Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae, Bioresour. Technol., 120, 135-141 (2011).
  24. S.-J. Choi, Y.-H. Kim, I.-H. Jung, and J.-H. Lee, Effect of nano bubble oxygen and hydrogen water on microalgae, Appl. Chem. Eng., 25(3), 324-329 (2014). https://doi.org/10.14478/ace.2014.1038
  25. C. Yoo, C. J. Kim, G. G. Choi, C. Y. Ahn, J. S. Chio, and H. M Oh, A mutant arthrospora platensis M20CJK3 showing enhanced growth rate and floatation activity, Kor. J. Microbiol., 45, 268-274 (2009).
  26. H. S. Jeong, M. K Choi, T.-O. Choi, and J.-H. Lee, Isolation of lipid high-yielding chlorella vulgaris mutants by UV irradiation, J. Mar. Biosci. Biotechnol., 6, 26-30 (2014). https://doi.org/10.15433/ksmb.2014.6.1.026
  27. T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for biodiesel production and other applications: a review. Renew. Sustain, Energy Reviews., 14, 217-232 (2010). https://doi.org/10.1016/j.rser.2009.07.020
  28. C. Attilio, A. C. Alessandro, Y. O. Erika, P. Patrizia, and M. D. Borghi, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chem Eng Process., 48, 1146-1151 (2009). https://doi.org/10.1016/j.cep.2009.03.006

Cited by

  1. 클로로필 고생산성 Chlorella vulgaris 변이주의 특성 분석 vol.43, pp.3, 2015, https://doi.org/10.4014/mbl.1507.07005