References
- Antonio A. (2008). Drying and autogenous shrinkage of pastes and martars with activate slag cement, Cement and Concrete Research, 38(4), 565-574. https://doi.org/10.1016/j.cemconres.2007.11.002
- Atis C. (2009). Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar, Construction and Building Materials, 23(1), 548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
- Bakhrev T. (2002). sulfate attack on alkali-activated slag concrete, Cement and Concrete Research, 32, 211-216. https://doi.org/10.1016/S0008-8846(01)00659-7
- Joseph D. (1989). Geopolymer and geopolymeric materials, Journal of Thermal Analysis and Calorimetry, 35(2), 429-441. https://doi.org/10.1007/BF01904446
- Kang, H. (2009). Effect of Alkaline Activator and Curing Conditionon the Compressive Strength of Cementless Fly Ash Based Alkali-Activated Mortar, Journal of Korean Institute of Resources recycling, 18(2), 315-316.
- Koh, K. (2011). Evaliation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar, Journal of Korean Institute of Resources recycling, 20(3), 40-47. https://doi.org/10.7844/kirr.2011.20.3.040
- Koh, K. (2012). Development of Geopolymer Mortar Based on Fly Ash, Journal of Korean Institute of Resources recycling, 21(4), 119-126.
- Kostas K. (2007). A review and Prospects for the Minerals Industry, Journal of Minerals Engineering, 20(14), 1261-1277. https://doi.org/10.1016/j.mineng.2007.07.011
- Lee, J. (2001). Polymer Materials Chemistry. Samkwang Publisher.
- Min, K. (2007). Resistance of Alkali Activated Slag Cement Mortar to Sulfuric Acid Attack, Journal of the Korean Ceramic Society, 44(211), 633-638. https://doi.org/10.4191/KCERS.2007.44.1.633
- Yang, K. (2007). The Properties and Applications of Alkali-Activated Concrete with No Cement , Journal of the Concrete Institute of Korea, 19(2), 42-48.
- Yoon, S. (2008). The Physicla Fluidity Properties of Concrete Containing Melamine and Naphthalene-type Superplasticizer, Korea Concrete Institute, 457-460.