• Title/Summary/Keyword: Lipschitz strongly pseudocontractive mappings

Search Result 5, Processing Time 0.018 seconds

ON THE ON THE CONVERGENCE BETWEEN THE MANN ITERATION AND ISHIKAWA ITERATION FOR THE GENERALIZED LIPSCHITZIAN AND Φ-STRONGLY PSEUDOCONTRACTIVE MAPPINGS

  • Xue, Zhiqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.635-644
    • /
    • 2008
  • In this paper, we prove that the equivalence between the convergence of Mann and Ishikawa iterations for the generalized Lipschitzian and $\Phi$-strongly pseudocontractive mappings in real uniformly smooth Banach spaces. Our results significantly generalize the recent known results of [B. E. Rhoades and S. M. Soltuz, The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitz operators, Int. J. Math. Math. Sci. 42 (2003), 2645.2651].

STRONG CONVERGENCE OF A MODIFIED ISHIKAWA ITERATIVE ALGORITHM FOR LIPSCHITZ PSEUDOCONTRACTIVE MAPPINGS

  • Osilike, M.O.;Isiogugu, F.O.;Attah, F.U.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.565-575
    • /
    • 2013
  • Let H be a real Hilbert space and let T : H ${\rightarrow}$ H be a Lipschitz pseudocontractive mapping. We introduce a modified Ishikawa iterative algorithm and prove that if $F(T)=\{x{\in}H:Tx=x\}{\neq}{\emptyset}$, then our proposed iterative algorithm converges strongly to a fixed point of T. No compactness assumption is imposed on T and no further requirement is imposed on F(T).

CONVERGENCE AND STABILITY OF THREE-STEP ITERATIVE SCHEME WITH ERRORS FOR COMPLETELY GENERALIZED STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • ZHANG FENGRONG;GAO HAIYAN;LIU ZEQING;KANG SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.465-478
    • /
    • 2006
  • In this paper, we introduce a new class of completely generalized strongly nonlinear quasivariational inequalities and establish its equivalence with a class of fixed point problems by using the resolvent operator technique. Utilizing this equivalence, we develop a three-step iterative scheme with errors, obtain a few existence theorems of solutions for the completely generalized non-linear strongly quasivariational inequality involving relaxed monotone, relaxed Lipschitz, strongly monotone and generalized pseudocontractive mappings and prove some convergence and stability results of the sequence generated by the three-step iterative scheme with errors. Our results include several previously known results as special cases.

ON GENERALIZED NONLINEAR QUASI-VARIATIONAL-LIKE INCLUSIONS DEALING WITH (h,η)-PROXIMAL MAPPING

  • Liu, Zeqing;Chen, Zhengsheng;Shim, Soo-Hak;Kang, Shin-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1323-1339
    • /
    • 2008
  • In this paper, a new class of $(h,{\eta})$-proximal for proper functionals in Hilbert spaces is introduced. The existence and Lip-schitz continuity of the $(h,{\eta})$-proximal mappings for proper functionals are proved. A class of generalized nonlinear quasi-variational-like inclusions in Hilbert spaces is introduced. A perturbed three-step iterative algorithm with errors for the generalized nonlinear quasi-variational-like inclusion is suggested. The existence and uniqueness theorems of solution for the generalized nonlinear quasi-variational-like inclusion are established. The convergence and stability results of iterative sequence generated by the perturbed three-step iterative algorithm with errors are discussed.