DOI QR코드

DOI QR Code

Performance Analysis of OWC-MB Hybrid Wave Energy Harvesting System Attached at Caisson Breakwater

케이슨방파제 부착 OWC-MB 복합형 파력발전시스템 성능해석

  • 서지혜 (한국해양과학기술원 연안공학연구본부) ;
  • 박우선 (한국해양과학기술원 연안공학연구본부) ;
  • 이중우 (한국해양대학교 건설공학과)
  • Received : 2015.01.16
  • Accepted : 2015.04.28
  • Published : 2015.06.01

Abstract

Wave energy harvesting system using OWC(Oscillating Water Column) and MB (Movable Body) attached at the caisson breakwater was studied. This system was suggested to maximize wave energy extraction using resonant phenomena of oscillating water column and buoy in wave channel (Park et al., 2014). Not only incident waves but also reflected waves from the breakwater can be used as sources of exciting force for harvesting wave energy efficiently. Using Galerkin finite model based on the linear wave theory (Park, 1991), the performance of the system was evaluated for various damping ratios of power take off system. Numerical results show that the proposed system is excellent in efficiency compared with that of conventional system and the performance of the system is governed by the resonance of oscillating water column in the wave channel. In addition, the additional efforts to minimize viscous damping was found to be necessary because viscous damping occurring in the channel and around the moving buoy is significant in generation efficiency.

기존 케이슨방파제 외해 측에 수로를 설치하고 수로 내에 부유체를 설치한 파력발전시스템에 대해서 연구하였다. 이 시스템은 중복파를 기진력으로 활용하고, 수로 내 수주와 부유체의 공진현상을 이용하여 에너지 추출효율 극대화할 목적으로 제안되었다(Park et al., 2014). 선형파 이론에 기초한 Galerkin 유한요소 모델(Park, 1991)을 이용하여 제안된 발전시스템의 성능을 평가한 결과, 기존의 타 시스템에 비하여 우수한 발전효율을 보임과 수로 내 수주의 공진현상이 성능에 지배적인 영향을 미침을 확인하였다. 또한, 수로와 부이 주변에서 발생하는 유체 점성감쇠가 발전효율에 미치는 영향이 커 이를 최소화하는 노력이 필요한 것으로 평가되었다.

Keywords

References

  1. Antonio, F. de O. Falcao. (2010). "Wave energy utilization: A Review of the Technologies." Renewable and Sustainable Energy Reviews, Vol. 14. pp. 899-918. https://doi.org/10.1016/j.rser.2009.11.003
  2. Brooke, J. (2003). Wave energy conversion, Elsevier, Amsterdam.
  3. Charlier, R. H. and Justus, J. R. (1993). Ocean energies, Elsevier, Amsterdam.
  4. Chen, Z., Yu, H., Hu, M., Meng, G. and Wen, C. (2013). "A review of offshore wave energy extraction system." Advances in Mechanical Engineering, Vol. 2013, pp. 1-9.
  5. Cho, I. H. and Kweon, H. M. (2011). "Extraction of wave energy using the coupled heaving motion of a circular cylinder and linear electric generator." Journal of Korean Society of Ocean Engineers, Vol. 25, No. 6, pp. 9-16 (in Korean).
  6. Choi, Y. D. and Lee, Y. H. (2007). "The state of research and development of the wave power technologies." Journal of Korean Society of Solar Energy, Vol. 6, pp. 17-24.
  7. Drew, B., Plummer, A. R. and Sahinkaya, M. N. (2009). "A review of wave energy converter technology." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 223, pp. 887-902.
  8. Engstrom, J. (2011). Hydrodynamic Modelling for a Point Absorbing Wave Energy Converter, Ph.D. Dissertation, Acta Universitatis Upsaliensis.
  9. Eriksson, M., Isberg, J. and Leijon, M. (2005). "Hydrodynamic modelling of a direct drive wave energy converter." Int. J. of Engrg Sci., Vol. 43, pp. 1377-1387. https://doi.org/10.1016/j.ijengsci.2005.05.014
  10. Evans, D. V. (1976). "A theory for wave-power absorption by oscillating bodies." J. Fluid Mech., Vol. 77, pp. 1-25. https://doi.org/10.1017/S0022112076001109
  11. Hong, K. Y. (2012). "The status of wave power generation technology and future prospects." Proceedings of Korean Society of Ocean Science and Technology, pp. 98-106 (in Korean).
  12. Ivanova, I. A., Bernhoff, H., Agren, O. and Leijon, M. (2005). "Simulated generator for wave energy extraction in deep water." Ocean engineering, Vol. 32, No. 14, pp. 1664-1678. https://doi.org/10.1016/j.oceaneng.2005.02.006
  13. Jahangir, K. and Gouri, S. B. (2009). Ocean energy: Global technology development status, No. T0104, Powertech Labs for the IEA-OES.
  14. Jeong, S. T., Park, W. S. and Lee, H. C. (2002). "Finite element analysis for multiple floating breakwaters." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 14, No. 4 pp. 257-264 (in Korean).
  15. McCormick, M. E. (2013). Ocean wave energy conversion, Courier Dover Publications.
  16. Mueller, M. and Baker, N. J. (2002). "A low speed reciprocating permanent magnet generator for direct drive wave energy converters." Proceedings of International Conference on Power Electronics Machines and Drives, pp. 468-473.
  17. Park, W. S. (1991). Reliability analysis of tension leg platforms for wave loadings, Korea advanced institute for science and technology (KAIST), Ph.D. Dissertation, p. 144.
  18. Park, W. S., Yi, J. H. and Seo, J. H. (2014). Wave power generation apparatus employing linear generator, Korean patent, 10-1421462.
  19. Salter, S. H. (1974). "Wave power." Nature, Vol. 249, No. 5459, pp. 720-724. https://doi.org/10.1038/249720a0
  20. Seo, J. H. and Park, W. S. (2013). "Wave power extracting system with linear induced generator attached to an existing vertical breakwater." Proceedings of Korean Society of Civil Engineers, Vol. 39, No. 1 p. 749 (in Korean).
  21. Seo, J. H. and Park, W. S. (2014). "Wave power extracting system with multi-resonators attached to vertical breakwaters." The Twentyfourth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
  22. Shin, S. H. and Hong, K. Y. (2011). "The state-of-the-art and key performance indicators for commercial use of the wave energy utilization technologies." Journal of Korean Society of Civil Engineers, Vol. 59, No. 5, pp. 55-62 (in Korean).
  23. Sommerfeld, A. (1949). Partial differential equations in physics (Vol. 1), Academic Press, New York.