• Title/Summary/Keyword: 유속 및 수심 측정

Search Result 121, Processing Time 0.036 seconds

Assessment of Depth-averaged Velocity Conversion Factors Using Measured Depthwise Velocities in a Natural River (하천의 수심별 유속측정자료를 이용한 수심평균유속환산계수 산정)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.308-308
    • /
    • 2011
  • 하천에서 유량을 산정하기 위해서 전자파표면유속계를 이용하여 표면유속을 측정하고 수심평균유속환산계수 0.85를 일률적으로 적용하여 수심평균유속을 산정하고 있다. 이 수심평균유속환산계수 0.85의 적절성에 대한 논의가 지속되어져 왔으나 그 동안에는 이에 대한 현장검증을 할 수 있는 방법이 없었던 실정이다. 하지만 최근 들어서는 ADCP(Acoustic Doppler Current Profiler)의 하천용 Application인 StreamPro ADCP가 개발되어 이를 이용하면 홍수기에 수심별 유속을 측정할 수 있다. 다만 홍수기에 StreamPro ADCP의 적용시에는 여러 가지 높은 위험성이 상존하는 것은 인지의 사실이지만, 그 외의 별다른 방법이 없는 실정이다. 따라서 홍수기에 StreamPro ADCP를 이용하여 수심별 유속을 측정하고 이와 동시에 측정한 표면유속을 이용하여 수심평균유속환산계수를 산정하여 기존에 환산계수로 적용하고 있는 0.85의 적절성을 파악하고자 하였다. 흐름조건별 수심평균유속환산계수 산정을 위하여 평수기 용담 수자원시험유역의 동향지점에서 수심평균유속환산계수를 산정한 결과 0.632~1.352로 넓게 분포하고 있음을 파악하였다. 이렇게 계수가 실제 적용하는 0.85와는 크게 차이가 나는 이유로는 수심이 얕아서 바닥마찰의 영향이 크기 때문인 것으로 판단되었다. 이에 본 연구에서는 여러 지점에서 홍수기 수심별 유속의 실측을 통하여 수심평균유속환산계수 분포정도를 산정하고자 하였다. 대청댐 상류의 수통수위표가 위치해 있는 적벽대교지점에서 StreamPro ADCP를 이용하여 수심평균유속환산계수를 산정한 결과 0.735~0.986 사이에 분포하고 있다. 측정한 결과의 수심평균유속환산계수의 평균값은 0.853으로 기존에 수심평균유속의 산정을 위하여 적용하고 있는 0.85와 거의 일치함을 보이고 있다. 측정당시 수심이 3.6 m에 이르고 있고 유속 또한 1.55 m/s에 이르고 있어 홍수시 일반하천에서 발생하는 수위와 유속임을 감안할 때, 0.735~0.986의 수심평균유속환산계수는 홍수시 순간적인 변화의 폭이 큼을 알 수 있다. 이렇게 순간적인 변화가 큰 이유로는 난류의 성분이 강해서 나타나는 것으로 이를 평균하면 0.853으로 나타나고 있어 홍수시에 수심평균유속환산계수를 0.85를 사용하여도 무방함을 알 수 있다. 동향지점에서 홍수기에 수심별 유속의 실측을 통하여 수심평균유속환산계수를 산정하고자 하였다. 그러나 이 지점은 강한 와류로 인하여 ADCP가 심하게 흔들림으로 인하여 순간적인 유속의 차이가 최대 4배까지 보임을 알 수 있다. 이로 인하여 수심평균유속환산계수의 범위는 0.233~0.983에 이른다. 측정당시 표면유속이 2.07 m/s 인 것을 감안하여 이 표면유속에 상응하는 수심별 유속 자료만을 이용하여 산정시, 수심평균유속환산계수는 0.876이다. 하천의 하류지점에서 수심별 유속을 측정하여 수심평균유속환산계수를 산정하고자 한강하류로 유입하는 굴포천의 구교 및 박촌1교 지점에서 유속측정을 실시하였다. 이들 두 지점은 홍수기에 조차도 유속이 1 m/s 에 이르지 못하는 지점으로, 수심평균유속환산계수를 산정한 결과 각각 0.826, 0.833을 나타내고 있어, 수심평균유속환산계수 0.85가 홍수기뿐만 아니라 평 갈수기에도 적용할 수 있는 가능성을 확인하였다.

  • PDF

Assessment of Depth-averaged Velocity Conversion Factors in a Natural River with Measured Velocities (자연하천의 유속측정에 의한 수심평균유속환산계수의 산정)

  • Kim, Young-Sung;Lee, Hyun-Seok;Yang, Jae-Rheen;Lee, Yo-Sang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1897-1901
    • /
    • 2010
  • 이동식 전자파표면유속계를 이용한 홍수유량의 산정을 위해서 임의의 유량측정지점에서 측정한 표면유속 값에 수심평균유속환산계수 0.85를 적용하여 그 지점의 평균유속을 계산하고 있다. 이로 인해 각 지점에서 흐름조건 및 기상학적으로 요인으로 인한 이 계수의 변동성을 고려하지 않은 상태로 유량을 산정하게 되어 각 흐름조건을 고려한 유량산정을 할 수 없는 실정이다. 이에 하천 현장에서 표면유속과 수심별유속의 실측 자료를 이용하여 흐름조건에 따른 표면유속과 평균유속의 관계를 파악하고자 하였다. 이를 위하여 용담 수자원시험유역의 동향지점에서 하천을 횡단하며 바닥에서 수표면까지 수심방향으로 0.05~0.10 m의 간격으로 프로펠러 유속계를 이용하여 정밀법으로 각 수심에서의 유속을 측정하였다. 정밀측정된 수심별 유속을 이용하여 평균유속을 산정하고 이를 수체 (water column)의 가장 최상층에서 측정한 유속을 표면유속으로 가정한후 이로부터 수심평균유속환산계수를 산정하여 흐름조건에 따른 계수의 변화를 조사하였다. 하천 현장에서 흐름조건의 변화에 따른 표면유속과 수심별유속의 정밀측정을 통한 이들 깊이별 유속의 변화여부를 용담수자원시험유역의 동향지점에서 현장조사를 실시하였다. 측정당시 풍속이 느려서 (1.5~3.1 m/s) 바람으로 인한 유속에 미치는 영향이 수심별 유속분포상으로는 거의 나타나지 않았다. 다만 양안에서 평균유속과 표면유속이 역전되는 현상이 발생되었는데 이는 벽면 마찰에 바닥마찰의 영향이 추가됨에 따른 것으로 판단된다. 수심별 유속측정 결과를 전체적으로 분석한 결과 환산계수가 0.632~1.352로 넓게 분포하고 있다. 환산계수가 1.0 이상인 경우는 양안에 인접한 두 지점인데, 이들 두 경우는 유속분포가 이론적인 유속분포와는 상반된 유속이 측정 - 표면유속이 수심평균유속보다 느림 - 되었다. 환산계수가 0.6~0.8 사이에서 형성된 경우는 표면유속이 평균유속보다 25~55% 정도 빠르게 나타나고 있다. 전제 측정결과를 검토해보면, 전반적으로 양안에 인접한 측선에서 표면유속이 평균유속보다 느려지는 현상이 나타나고 있다. 또한 유속이 1.0 m/s 이상인 경우에 0.677~0.790의 환산계수 값을 보이는데 이 경우 수심이 50 cm 이하여서 바닥마찰의 영향이 큰 것으로 판단된다. 다양한 흐름조건별 표면유속과 수심별유속의 측정을 할 수 있는 현장여건 - 유속, 수위 등의 동일흐름 조건에 대해서 -에 많은 부분이 제약되어 이의 정밀분석이 힘든 실정이다. 따라서 이러한 현장측정시의 제약성을 극복하기 위해서 여러 가지 흐름조건을 구현할 수 있는 정밀제어가 가능한 실내실험장치를 이용한 면밀한 분석이 필요하다.

  • PDF

Appropriateness Check of the Existing Depth-averaged Velocity Conversion Factor in River Discharge Measurement Using Surface Velocity (표면유속을 이용한 하천유량측정에 있어서 기존 수심평균유속환산계수의 적정성 검토)

  • Kim, Young-Sung;Yang, Jae-Rheen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1887-1891
    • /
    • 2010
  • 전자파표면유속계를 이용한 홍수유속측정에 있어서 수심평균유속환산계수로 0.85를 표면유속에 일률적으로 적용하도록 제시하고 있다. 그 동안 이의 적절성 여부에 대한 논의가 꾸준히 지속되어져 왔다. 이에 전자파 표면유속계를 개발하고 상품화하여 보급시킨 개발 주체의 입장에서 이에 대한 검증을 시도하였다. 이의 검증을 위해서 가장 중요한 것은 정해진 측정지점의 유량측정시각의 정확한 유량을 파악해야 함은 필수조건이다. 하지만 유량측정지점의 유량의 참값은 알기는 참으로 어려운 일이다. 이에 지금까지는 댐의 방류량을 참값이라고 가정을 하고 여러 가지 기기를 이용한 유량측정을 실시하여 각 기기의 측정오차를 비교하는 기준유량으로 댐방류량을 이용하였다. 따라서 본 연구에서는 방류량의 정확성 파악에 의하여 수심평균유속환산계수의 적정성 여부를 검토하고자 하였다. 또한 이에 대한 이론적인 접근의 방법으로서 유속분포곡선식으로부터 수심평균유속환산계수를 산정하여 이를 기존에 표면유속을 평균유속으로 환산하기 위해서 적용하였던 계수와 비교를 하였다. 기존의 수심평균유속환산계수로 이용한 0.85에 대한 이론적인 검증을 위해서 Power law형의 유속분포식으로부터 수심평균유속환산계수를 유도한 결과 하상의 재료에 따라 0.833 (거친 하상)~0.875 (부드러운 하상)의 범위에 분포하였다. 이는 환산계수로 이용하고 있는 0.85는 유속분포가 크게 변동하지 않은 경우에 수심 평균유속을 환산하는데 이용함에 무리가 없음을 보여준다. 기존의 대청댐 방류량을 이용한 수심평균유속환산 계수를 산정한 결과를 분석한 결과 환산계수가 0.828~0.868의 범위에 분포하고 있다. 즉 기존의 수심평균유속환산계수로 이용을 하고 있는 0.85와 비교했을때 ${\pm}3%$의 오차를 보이고 있음을 알 수 있다. 대청댐 방류량에 대한 검증을 위해서 여러 가지 기기를 이용한 동시 유량 측정을 실시하였고, 전자파표면유속계로 측정한 표면유속에 기존의 수심평균유속환산계수 0.85를 적용했을때의 유량산정 결과를 다른 방법에 의한 측정 결과 및 방류량과 비교를 실시하였다. ADCP 측정은 유량조사사업단과 한국수자원공사 충청지역본부의 도움을 받아 실시하였는데, 유량조사사업단은 9회 측정하여 평균한 유량이 242.0 cms, 충청지역본부에서는 6회 측정하여 평균한 결과가 234.6 cms이었고, 전자파표면유속계로 측정한 표면유속을 이용하여 산정한 유량이 249.0 cms이었으며, 동시유량 측정당시 방류량은 242 cms이었다. ADCP를 이용한 유량측정에 있어서, 각 측정시의 유량측정 오차가 최대 20% 까지 나타나고 있다. 반면 대청댐의 발전 방류량은 거의 일정한 수준을 유지했던 것을 감안할 경우 유량측정 기간에 하류의 조정지댐으로 인한 배수효과의 영향으로 ADCP를 이용한 유량측정값에 변동이 발생한 것으로 추측된다. 전반적으로 부자를 제외하고는 사용된 유량측정 방법들이 거의 동일한 값을 보임을 알 수 있다. 또한 표면유속에 기존의 환산계수를 적용하여도 유량산정이 다른 방법과 유사하게 산정됨을 알 수 있다.

  • PDF

Hydraulic Stability Investigation of Water Purification Material Installed in Agricultural Drainage Channel (수질정화체를 설치한 농업용 배수로의 수리적 안정성 검토)

  • Park, Ki-Chun;Kim, Sun-Joo;Yang, Yong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1261-1265
    • /
    • 2006
  • 본 연구에서는 수질정화체 설치에 따른 농업용 배수로의 수리적 안정성 검토를 위하여 수리모형시험을 실시하였으며, 수질정화체의 단면적 및 위치를 변화시켜 수리적 안정성을 검토하였다. 유량이 일정한 상태에서 수질정화체의 단면적을 변화시켜 수심 및 유속을 측정하여 수질정화체의 단면적에 대한 농업용 배수로의 수리적 안정성을 알아보았으며, 단면적을 고정시킨 상태에서 수질정화체의 위치변화에 따른 수심 및 유속을 측정함으로써 수질정화체 간의 간격에 의한 배수로의 수리적 안정성을 고찰하였다. 수심과 유속은 수질정화체를 기준으로 상류 및 하류에 대하여 측정함으로서 수질정화체 전 후의 변화상태를 알아보았다. 수질정화체의 단면적이 증가함에 따라 상류 수심이 하류 수심에 비하여 증가하며, 유속변화가 심한 것을 확인하였다. 또한 수질정화체의 간격이 가까워짐에 따른 유속 및 수심 변화를 알아보았다. 본 연구에서 나온 수리적 변화는 수로내의 장애물에 대한 기존 공식 중에 D'Aubuission식과 유사한 것으로 나타났다.

  • PDF

Experimental Study on Vertical Velocity Distribution in the Open Channel with Smooth bed Using PIV Technique (매끄러운 하상의 개수로에서 PIV 기법을 이용한 연직유속분포의 실험적 연구)

  • Byun, Hyun-Hyuk;Yoon, Byung-Man;Ji, Un
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.614-614
    • /
    • 2012
  • 개수로에서 혹은 수리구조물 주변에서의 흐름 및 난류 특성을 파악하기 위해서는 연직유속분포 및 수심별 평면유속분포의 측정이 필요하다. 유속분포를 측정하기 위한 방법은 음파 도플러 유속계(ADV:Acoustic Doppler Velocimetry)를 사용하는 방법과 PIV 기법을 이용하는 방법이 있다. 일반적으로 ADV는 한 지점의 유속을 시간변화에 따라 연속적으로 측정할 수 있어 난류특성의 정량적인 해석에 장점이 있으나 동시간에 여러 지점을 측정할 수 없기 때문에 난류의 공간적인 문제를 해석함에 있어서 한계가 있다. 그러나, 입자영상유속계(PIV:Particle Image Velocity)는 측정하고자 하는 단면에서 연직 횡단면의 유속분포 및 수심별 평면 유속분포 흐름장 측정이 가능하여 난류흐름의 공간적인 문제를 해석하는데 효과적일 뿐만 아니라 영상간의 시간간격을 짧게 하고, 촬영시간을 충분히 길게 한다면 개수로 내 난류특성 분석도 가능하다. 이에 본 연구의 목적은 PIV 기법을 이용하여 매끄러운 하상의 개수로에서 연직유속분포를 측정하고 그 특성을 정량적으로 분석하고자 한다. 본 연구에서는 첫째, PIV 기법을 이용하여 측정한 연직유속분포와 3차원 전자식 유속계를 이용하여 측정한 연직유속분포를 비교 분석하였다. 둘째, 후류법칙에 의해 계산된 연직유속분포와 PIV 기법을 이용하여 측정한 연직유속분포의 비교를 위해 각각의 무차원 유속분포(지점 유속/지점 마찰속도)를 계산하고 비교하였다. 마지막으로 각 흐름 조건에 따라 수심의 변화를 주어 연직유속분포를 PIV 기법으로 측정한 후 개수로의 수심변화에 따른 연직유속의 특성을 분석하였다. 분석 결과, PIV 기법을 이용하여 측정한 연직유속 성분에 비해 3차원 전자식 유속계로 측정한 연직유속 성분이 작게 나타났고 바닥에서부터 0.2h 지점까지는 무차원 유속분포(지점 유속/지점 마찰속도)가 후류법칙과 잘 맞는 경향을 보였으나 0.2h 지점부터 수표면까지는 유속이 감소하는 현상이 나타났다.

  • PDF

Accuracy Analysis of Velocity and Water Depth Measurement in the Straight Channel using ADCP (ADCP를 이용한 직선 하천의 유속 및 수심 측정 정확도 분석)

  • Kim, Jongmin;Kim, Dongsu;Son, Geunsoo;Kim, Seojun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.367-377
    • /
    • 2015
  • ADCPs have been highlighted so far for measuring steramflow discharge in terms of their high-order of accuracy, relatively low cost and less field operators driven by their easy in-situ operation. While ADCPs become increasingly dominant in hydrometric area, their actual measurement accuracy for velocity and bathymetry measurement has not been sufficiently validated due to the lack of reliable bench-mark data, and subsequently there are still many uncertain aspects for using ADCPs in the field. This research aimed at analyzing inter-comparison results between ADCP measurements with respect to the detailed ADV measurement in a specified field environment. Overall, 184 ADV points were collected for densely designed grids for the given cross-section that has 6 m of width, 1 m of depth, and 0.7 m/s of averaged mean flow velocity. Concurrently, ADCP fixed-points measurements were conducted for each 0.2m and 0.02m of horizontal and vertical spacing respectively. The inter-comparison results indicated that ADCP matched ADV velocity very accurately for 0.4~0.8 of relative depth (y/h), but noticeable deviation occurred between them in near surface and bottom region. For evaluating the capacity of measuring bathymetry of ADCPs, bottom tracking bathymetry based on oblique beams showed better performance than vertical beam approach, and similar results were shown for fixed and moving-boat method as well. Error analysis for velocity and bathymetry measurements of ADCP can be potentially able to be utilized for the more detailed uncertainty analysis of the ADCP discharge measurement.

Uncertainties due to The Limited Number of Verticals in River Discharge Measurement (하천 유량측정에서 제한된 측선수에 따른 불확실도)

  • Kim, Chi Young;Cha, Jun Ho;Kim, Dong Gu;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1086-1091
    • /
    • 2004
  • 일반적으로 하천유량은 하천단면에서 하폭, 수심, 유속 등에 대한 연속적인 측정으로 계산된다. 이론적인 적분법 대신 구간 유량의 합으로 유량을 산정하는 방법들은 한 측선에서 유속과 수심이 균일하다는 가정과 측선사이에서 유속 및 수심이 선형적인 관계를 지니고 있다는 가정을 포함한다. 따라서 너무 작은 측선수의 선택은 상당한 오차를 유발하게 된다. 유속-면적법에 의한 하천유량 측정에 있어 한정된 측선수를 선택하는데 따른 측정유량의 불확실도를 분석하였다. 측선수에 따른 불확실도를 분석하기 위해 국내의 중소하천 유량측정 지점을 중심으로 9개 하천에서 19개의 측정자료를 활용하였다. 유속 및 수심측정은 50개 이상의 측선에서 측정하였으며, 한 측점에서 유속측정은 수직축 컵형태의 유속계를 활용하여 120초 이상 측정하였다. 50개 이상의 측선으로 계산한 유량을 진유량으로 가정하고 각자 측선수에 따른 불확실도를 분석한 결과 작은 측선수를 선택할 경우 정확도가 심자하게 낮아짙 가능성이 있는 것으로 나타났다. 또한 20측선 이상에서 $5\%$이하로 수렴되어가는 경향을 나타냈다. 따라서 하천 유량측정 실무에서 20측선 이상의 측선을 선택하는 것이 비교적 정확하면서 경제적인 유량측정이 될 것으로 판단된다.

  • PDF

Algorithms for the Accuracy Improvement of the ADCP Discharge Based on the Correction of Velocity and Bathymetry Measurement (ADCP 유속 및 수심자료 보정을 통한 유량 관측 정확도 향상 알고리즘 개발)

  • Kim, Dong-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.689-689
    • /
    • 2012
  • ADCP는 하천 단면에서 매우 짧은 시간에 유속과 수심을 정밀하게 측정할 수 있어 재래식의 부자나 프라이스 유속계를 활용한 방식에 비해 유량 관측 정확도가 매우 높고 유체의 흐름장 분석 등 부가적인 정보를 제공하여 최근 국내외에서 매우 활발하게 이용되기 시작하였다. 또한 고정식 수위계나 유속계를 활용한 실시간 유량관측 시 요구되는 유량-수위관계곡선식 검보정에도 활용되고 있다. 하지만 ADCP는 난류나 하천 부유물, 낮은 수심 등으로 음향신호의 교란으로 인해 발생하는 관측 오차로 인해 유속이나 수심을 과다 혹은 과소 산정하여 유량 관측 정확도를 현저히 낮추는 경우가 종종 있어 왔다. 그리고 미세한 셀 단위의 유속 및 수심관측 자료와 측정되지 않은 수면, 바닥, 하안 부근의 영역을 고려한 ADCP 유량 관측 알고리즘의 복잡성으로 인해 일부 관측오차의 수정을 통한 유량 보정이 매우 까다로운 실정이다. 본 연구에서는 ADCP 제작사 별 유량 산정 알고리즘을 파악하여 유속 및 수심 자료의 보정을 통해 유량을 재계산할 수 있는 알고리즘을 계발하였다. 또한 ADCP의 에러속도를 기준으로 통계적인 방법을 통해 과다 혹은 과소 산정된 유속을 필터링하고 수심을 보정하는 알고리즘을 개발하여 원 관측값의 정확도를 높였고 보정된 관측값을 유량 산정에 반영시켜 유량 관측 정확도를 향상시키고자 하였다. 본 알고리즘은 국내외에 다양한 현장조건에서 관측된 ADCP 자료를 바탕으로 적용되어 그 효용성을 입증하였다.

  • PDF

Assessment of Uncertainty for Discharge Measurement using Velocity-Area method (유속-면적법으로 측정된 유량에 대한 측정 불확도 평가)

  • Kim, Jongmin;Kim, Dongsu;Kim, Seojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.104-104
    • /
    • 2016
  • 소규모 하천에서의 평수기 유량 측정은 일반적으로 지점식 초음파 유속계, 프로펠러 유속계 등을 활용해 도섭법으로 측정된 유속 측정성과를 기반하여 유속-면적법으로 산정된다. 유속-면적법으로 측정된 유량 측정 성과는 횡방향 측선의 수, 수심방향 측점의 수, 측정 시간, 수심 등 제반 측정 인자에 의해 영향을 받고 유량 불확도는 각 인자 별 오차에 영향을 받는다. ISO 748 (2007)과 ISO 1088 (2007)은 유속-면적법 적용방법, 현장 측정 가이드라인, 불확도 인자 별 적용 요건에 따른 오차, 최종 유량 불확도 산정 기법을 제시하였다. 따라서, 국내외 유량조사 기관에서는 유속면적법을 적용할 경우, ISO에서 제시된 인자 별 오차 및 유량 불확도 산정 기법을 기반으로 유량 불확도를 산정해왔다. ISO 748과 1088은 다양한 규모의 실제 하천에서 관측된 자료를 기반으로 횡방향 측선 수, 수심방향 측점 수 (2점법, 3점법 등), 측정 시간 등과 관련된 인자 별 오차를 표로 상세하게 제시하였고 실무에서는 별도 추가 검증없이 사용해 왔다. 그러나, ISO에서 유속-면적법 유량 측정 불확도를 평가하기 위해 사용된 측정자료는 유량을 제어하기 힘들고 유속 측정 상황이 유출 조건 별로 상이한 현장 자료를 기반으로 하였고, 상대적으로 정확도가 낮은 프로펠러유속계를 기반으로 1960년대에 관측된 자료들을 주로 활용하여 도출되었다. 따라서, 본 연구에서는 기존 ISO에서 제시한 유속-면적법에 필요한 인자들의 오차를 정밀 실규모 실험을 통해 재산정하여 기존 ISO 748과 1088에서 제시한 인자별 오차의 적정성을 검증하고자 하였다. 이를 위해 흐름을 안정적으로 통제할 수 있는 건설기술연구원 안동 하천실험센터의 완경사수로(A2)에서 정상상태의 폭 7m, 수심 1m, 유속 약 1m/s의 흐름을 유지한 후, 유속 측정 정확도가 우수한 micro-ADV를 활용하여 공간적으로 매우 정밀하게 유속을 측정하고, 수심은 Total Station을 기반으로 흐름 발생 전에 정밀 측정하였다. 오차 분석 결과, ISO 규정에서 제시한 오차와 본 실험의 결과로 도출된 인자들의 오차는 상당한 차이를 보였다. 따라서, 본 연구 결과로 도출된 유속-면적법의 인자 별 오차는 실험이 수행된 소하천 규모의 하천에서 도섭법으로 산정된 유량의 불확도를 평가할 경우에 활용될 것으로 기대된다.

  • PDF

Korean Industrial Standards of River Measurements (하천 유량측정분야의 한국산업표준)

  • Jongmin, Kim;Sanghwa Jung;Minjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.9-9
    • /
    • 2023
  • 하천의 관리 및 활용을 위해서는 하천의 유량, 수심, 유속과 같은 수리량을 측정하고 모니터링하는 것은 매우 중요하다. 이러한 수리량은 측정하는 방법은 직접 측정하는 방법과 구조물을 이용하여 측정하는 방법이 있으며, 직접 측정하는 방법도 지점 유속을 측정하여 도섭법으로 측정하는 방법, 초음파 방식 도플러 유속계를 이용한 횡단 측정방법 및 특정 수심에서 측정한 유속을 이용하여 지표유속법으로 유량을 산정하는 방법 등이 있다. 또한 '수자원의 조사·계획 및 관리에 관한 법률' 제11조제1항에 따르면 수문조사의 방법·기준 및 수문조사 자료의 처리·활용 방법 등은 표준화해야 한다고 명시되어 있다. 정부에서는 WTO의 TBT협정 등 국제규범에 대응하기 위하여 국제표준인 ISO, IEC 등에 부합하는 국가표준운영체계를 유지하기 위하여 여러 분야의 국제 표준에 대한 대응을 수행하고, 국가표준을 관리하고 있다. 그 중 유량측정과 관련된 국가 및 국제 표준은 2018년부터 환경부 국립환경과학원에서 총괄하고, 한국건설기술연구원과 한국수자원공사에서 표준관리를 위한 표준개발협력기관과 국제표준 대응협력을 위한 ISO 국내 간사기관으로 운영되고 있다. 국가표준의 유량분야(TC 113)는 4개의 세부분과위원회(SC)로 구성되어 있고, 하천에서 수행되는 유량, 수심, 유속 측정 및 측정장비의 검정, 강수량 측정기기 등에 대한 39종이 제정되고 관리하고 있다. 한국건설기술연구원에서는 유량분야의 일반사항, 하천에서의 유량측정방법 및 유량측정기기에 관한 표준을 담당하고 있으며, 유량분야의 국제표준의 개발에 관한 과업을 수행하고 있다. 본 발표에서는 한국건설기술연구원에서 관리하는 유량분야 국가표준 및 국제표준의 종류 및 현업에서 수행중인 하천의 유량 측정과 국가표준의 관계에 대하여 설명하고자 한다.

  • PDF