DOI QR코드

DOI QR Code

Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea

  • Han, Joon-Hee (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University) ;
  • Shim, Hongsik (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Shin, Jong-Hwan (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University) ;
  • Kim, Kyoung Su (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University)
  • Received : 2015.03.15
  • Accepted : 2015.04.15
  • Published : 2015.06.01

Abstract

Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous plant species. Anthracnose control with fungicides has both human health and environmental safety implications. Despite increasing public concerns, fungicide use will continue in the absence of viable alternatives. There have been relatively less efforts to search antagonistic bacteria from mudflats harboring microbial diversity. A total of 420 bacterial strains were isolated from mudflats near the western sea of South Korea. Five bacterial strains, LB01, LB14, HM03, HM17, and LB15, were characterized as having antifungal properties in the presence of C. acutatum and C. gloeosporioides. The three Bacillus atrophaeus strains, LB14, HM03, and HM17, produced large quantities of chitinase and protease enzymes, whereas the B. amyloliquefaciens strain LB01 produced protease and cellulase enzymes. Two important antagonistic traits, siderophore production and solubilization of insoluble phosphate, were observed in the three B. atrophaeus strains. Analyses of disease suppression revealed that LB14 was most effective for suppressing the incidence of anthracnose symptoms on pepper fruits. LB14 produced antagonistic compounds and suppressed conidial germination of C. acutatum and C. gloeosporioides. The results from the present study will provide a basis for developing a reliable alternative to fungicides for anthracnose control.

Keywords

References

  1. Akhtar, M. S. and Siddiqui, Z. 2008. Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumilus: effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.). J. Gen. Plant Pathol. 74:53-60. https://doi.org/10.1007/s10327-007-0062-4
  2. Alexander, D. B. and Zuberer D. A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12:39-45. https://doi.org/10.1007/BF00369386
  3. Chet, I., rdentlich, A., Shapira, R. and Oppenheim, A. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria. Plant Soil 129:85-92. https://doi.org/10.1007/BF00011694
  4. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80. https://doi.org/10.1146/annurev.py.31.090193.000413
  5. Dey, R., Pal, K., Bhatt, D. and Chauhan, S. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159:371-394. https://doi.org/10.1016/j.micres.2004.08.004
  6. Elad, Y. and Baker, R. 1985. Influence of trace amounts of cations and siderophore-producing Pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75:1047-1052. https://doi.org/10.1094/Phyto-75-1047
  7. Garbeva, P., van Veen, J. A. and van Elsas, J. D. 2004. MICROBIAL DIVERSITY IN SOIL: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
  8. Govender, V., Korsten, L. and Sivakumar, D. 2005. Semi-commercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biol. Technol. 38:57-65. https://doi.org/10.1016/j.postharvbio.2005.04.005
  9. Halder, A., Mishra, A., Bhattacharyya, P. and Chakrabartty, P. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J. Gen. Appl. Microbiol. 36:81-92. https://doi.org/10.2323/jgam.36.81
  10. Han, K. S., Kim, B. R., Kim, J. T., Hahm, S. S., Hong, K. H., Chung, C. K., Nam, Y. G., Yu, S. H. and Choi, J. E. 2013. Biological control of white rot in garlic using Burkholderia pyrrocinia CAB08106-4. Res. Plant Dis. 19:21-24. https://doi.org/10.5423/RPD.2013.19.1.021
  11. Howarth, F. G. 1991. Environmental impacts of classical biological control. Annu. Rev. Entomol. 36:485-509. https://doi.org/10.1146/annurev.en.36.010191.002413
  12. Hsu, S. and Lockwood, J. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. J. Appl. Microbiol. 29:422-426.
  13. Huh, E. J. and Kim, J. W. 2010. Consumer knowledge and attitude to spending on environment-friendly agricultural products. Korean J. Hum. Ecol. 19:883-896. https://doi.org/10.5934/KJHE.2010.19.5.883
  14. Idris, E. E., Iglesias, D. J., Talon, M. and Borriss, R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20:619-626. https://doi.org/10.1094/MPMI-20-6-0619
  15. Jang, M. R., Moon, H. K., Kim, T. R., Yuk, D. H., Kim, J. H. and Park, S. G. 2010. Dietary risk assessment for pesticide residues of vegetables in Seoul, Korea. Korean J. Nutr. 43:404-412. https://doi.org/10.4163/kjn.2010.43.4.404
  16. Jeon, S. Y., Kim, Y. G., Lee, S. M., Son, H. J., Park, H. C., Kim, S. T., Park, K. D., Kang, U. G. and Kim, K. K. 2010. Structural identification of antibiotics from Pseudomonas sp. RRj 228, a antifungal activity of Collectotrichum acutatum causing anthracnose on pepper. J. Life Sci. 20:1254-1260. https://doi.org/10.5352/JLS.2010.20.8.1254
  17. Jung, M. K. and Oakley, B. R. 1990. Identification of an amino acid substitution in the benA, $\beta$-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. Cell Motil. Cytoskeleton 17:87-94. https://doi.org/10.1002/cm.970170204
  18. Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. and Defago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0:importance of the bacterial secondary metabolite 2,4-diacetylphlorogluciniol. Mol. Plant-Microbe Interact. 5:4-13. https://doi.org/10.1094/MPMI-5-004
  19. Kegley, S., Neumeister, L. and Martin, T. 1999. Disrupting the balance: ecological impacts of pesticides in California, pp. 7-65. Pesticide Action Network, North America.
  20. Kim, B. S., Oh, H. M., Kang, H. J., Park, S. S. and Chun, J. S. 2004. Notes: Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14:205-211.
  21. Kim, H. G. and Nam, M. H. 1999. Anthracnose of strawberry in Korea. Res. Plant Dis. 5:8-13.
  22. Kim, J. H., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. G., Kim, D. W., Lee, S. W. and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17:438-444.
  23. Kim, J. T., Park, S. Y., Choi, W. B., Lee, Y. H. and Kim, H. T. 2008. Characterization of Colletotrichum isolates causing anthracnose of pepper in Korea. Plant Pathol. J. 24:17-23. https://doi.org/10.5423/PPJ.2008.24.1.017
  24. Kim, S., Park, M., Yeom, S. I., Kim, Y. M., Lee, J. M., et al. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46:270-278. https://doi.org/10.1038/ng.2877
  25. Kim, S. T. and Yun, S. C. 2011. Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora blight on hot pepper. Res. Plant Dis. 17:121-128. https://doi.org/10.5423/RPD.2011.17.2.121
  26. Kim, T. S., Lee, G. H., Kim, G. J., Lee, S. W., Park, K. S. and Park, J. W. 2010. Antifungal activity of bacterial strains isolated from tidal mudflat and salted seafood (traditional jeotgal) against six major plant pathogens. Korean J. Pestic. Sci. 14:421-426.
  27. Kim, Y. K., Hong, S. J., Shim, C. K., Kim, M. J., Choi, E. J. Lee, M. H., Park, J. H., Han, E. J., An, N. H. and Jee, H. J. 2012. Functional analysis of Bacillus subtilis isolates and biological control of red pepper powdery mildew using Bacillus subtilis R2-1. Res. Plant Dis. 18:201-209. https://doi.org/10.5423/RPD.2012.18.3.201
  28. Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Pseudomonas siderophores: a mechanism explaining diseasesuppressive soils. Curr. Microbiol. 4:317-320. https://doi.org/10.1007/BF02602840
  29. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  30. Kong, H. G., Chun, O. J., Choi, K. H., Lee, K. Y., Baek, J. W., Kim, H. G., Murugaiyan, S., Moon, B. J. and Lee, S. W. 2010a. Formulation of Bacillus amyloliquefaciens A-2 and its efficacy to control tomato leaf mold caused by Fulvia fulva. Res. Plant Dis. 16:27-34. https://doi.org/10.5423/RPD.2010.16.1.027
  31. Kong, H. G., Kim, J. C., Choi, G. J., Lee, K. Y., Kim, H. J., Hwang, E. C., Moon, B. J. and Lee, S. W. 2010b. Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control activity. Plant Pathol. J. 26:170-177. https://doi.org/10.5423/PPJ.2010.26.2.170
  32. KOSTAT (Statistics Korea). 2013. Available from: http://kostat.go.kr
  33. Kwak, Y. K., Kim, I. S., Cho, M. C., Lee, S. C. and Kim, S. 2012. Growth inhibition effect of environment-friendly farm materials in Colletotrichum acutatum in vitro. J. Bio-Environ. Control 21:127-133.
  34. Lamsal, K., Kim, S. W., Kim, Y. S. and Lee, Y. S. 2012. Application of rhizobacteria for plant growth promotion effect and biocontrol of Anthracnose caused by Colletotrichum acutatum on Pepper. Mycobiology 40: 244-251. https://doi.org/10.5941/MYCO.2012.40.4.244
  35. Lee, G. W., Kim, M. J., Park, J. S., Chae, J. C., Soh, B. Y., Ju, J. E. and Lee, K. J. 2011. Biological control of Phytophthora blight and anthracnose disease in red-pepper using Bacillus subtilis S54. Res. Plant Dis. 17:86-89. https://doi.org/10.5423/RPD.2011.17.1.086
  36. Lee, S. Y., Weon, H. Y., Kim, J. J. and Han, J. H. 2013. Cultural characteristics and mechanism of Bacillus amyloliquefacien subsp. plantarum CC110 for biological control of cucumber downy mildew. Korean J. Pestic. Sci. 17:428-434. https://doi.org/10.7585/kjps.2013.17.4.428
  37. Lee, S. Y., Lee, S. B., Kim, Y. K. and Hwang, S. J. 2006. Biological control of garlic white rot accused by Sclereotium cepivorum and Sclereotium sp. using Bacillus subtilis 122 and Trichoderma harzianum 23. Res. Plant Dis. 12:81-84. https://doi.org/10.5423/RPD.2006.12.2.081
  38. Lim, T. H. 2005. Antifungal activity of Streptomyces griseofuscus 200401 against pathogens causing late blight and anthracnose on pepper. Korean J. Pestic. Sci. 9:102-107.
  39. Mahoney, M. J. and Tattar, R. 1980. Identification, etiology, and control of Euonymus fortunei anthracnose caused by Colletotrichum gloeosporioides. Plant Dis. 64:854-856. https://doi.org/10.1094/PD-64-854
  40. Malik, K. A., Bilal, R., Mehnaz, S., Rasul, G., Mirza, M. S. and Ali, S. 1997. Association of nitrogen-fixing, plant-growthpromoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37-44. https://doi.org/10.1023/A:1004295714181
  41. Miles, S. and Frewer, L. J. 2001. Investigating specific concerns about different food hazards. Food Qual. Prefer. 12:47-61. https://doi.org/10.1016/S0950-3293(00)00029-X
  42. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  43. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
  44. Pal, K. K. and Gardener, B. M. 2006. Biological control of plant pathogens. Plant Health Instructor 2:1117-1142.
  45. Park, K. S. and Kim, C. H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Plant Pathol. J. 8:61-69.
  46. Peres, N. A. R., Souza, N. L., Peever, T. L. and Timmer, L. W. 2004. Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Dis. 88:125-130. https://doi.org/10.1094/PDIS.2004.88.2.125
  47. Raaijmakers, J., Vlami, M. and de Souza, J. 2002. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537-547. https://doi.org/10.1023/A:1020501420831
  48. Rodriiguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  49. Rossolini, G. M., Schippa, S., Riccio, M. L., Berlutti, F., Macaskie, L. E. and Thalller, M. C. 1998. Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell. Mol. Life Sci. 54:833-850. https://doi.org/10.1007/s000180050212
  50. Sahu, S. and Jana, B. 2000. Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecol. Eng. 15:27-39. https://doi.org/10.1016/S0925-8574(99)00013-0
  51. Sari, E., Etebarian, H. R. and Aminian, H. 2007. The effects of Bacillus pumilus, isolated from wheat rhizosphere, on resistance in wheat seedling roots against the take-all fungus, Gaeumannomyces graminis var. tritici. J. Phytopathol. 155:720-727. https://doi.org/10.1111/j.1439-0434.2007.01306.x
  52. Schwyn, B. and Neilands, J. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  53. Sokol, P. A., Ohman, D. E. and Iglewski, B. H. 1979. A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J. Clin. Microbiol. 9:538.
  54. Sundara, B., Natarajan, V. and Hari, K. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 77:43-49. https://doi.org/10.1016/S0378-4290(02)00048-5
  55. Teather, R. M. and Wood, P. J. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777-780.
  56. Than, P. P., Del Castillo, C. S., Yoshikawa, T. and Sakata, T. 2004. Extracellular protease production of bacteriolytic bacteria isolated from marine environments. Fish. Sci. 70:659-666. https://doi.org/10.1111/j.1444-2906.2004.00854.x
  57. Vega, K. and Kalkum, M. 2012. Chitin, chitinase responses, and invasive fungal infections. Int. J. Microbiol. 2012:10.
  58. Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250-256. https://doi.org/10.1094/PHYTO-97-2-0250
  59. Wesseling, C., McConnell, R., Partanen, T. and Hogstedt, C. 1997. Agricultural pesticide use in developing countries:health effects and research needs. Int. J. Health Serv. 27:273-308. https://doi.org/10.2190/E259-N3AH-TA1Y-H591
  60. Wu, W. S., Wu, H. C. and Li, Y. L. 2007. Potential of Bacillus amyloliquefaciens for control of Alternaria cosmosa and A. patula of Cosmos sulfurous (Yellow Cosmos) and Tagetes patula (French marigold). J. Phytopathol. 155:670-675. https://doi.org/10.1111/j.1439-0434.2007.01293.x
  61. Xu, S. J., Hong, S. J., Choi, W. and Kim, B. S. 2014. Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol. J. 30:102-108. https://doi.org/10.5423/PPJ.OA.05.2013.0052
  62. Yang, H. S., Sohn, H. B. and Chung, Y. R. 2002. Biological control of Pythium damping-off of cucumber by Bacillus stearothermophilus YC4194. Res. Plant Dis. 8:234-238. https://doi.org/10.5423/RPD.2002.8.4.234
  63. Yoo, J. H., Park, I. C. and Kim, W. G. 2012. Biocontrol of anthracnose of chili pepper by Bacillus sp. NAAS-1. Korean J. Mycol. 40:277-281. https://doi.org/10.4489/KJM.2012.40.4.277

Cited by

  1. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat ( Triticum turgidum L. subsp. durum ) vol.192, 2016, https://doi.org/10.1016/j.micres.2016.06.012
  2. Identification and antifungal activity analysis of two biocontrol antagonists to Colletotrichum musae vol.165, pp.7-8, 2017, https://doi.org/10.1111/jph.12592
  3. Biological characteristics ofBacillus amyloliquefaciensAK-0 and suppression of ginseng root rot caused byCylindrocarpon destructans vol.122, pp.1, 2017, https://doi.org/10.1111/jam.13325
  4. Anthracnose Caused by Colletotrichum acutatum in Robinia pseudoacacia vol.22, pp.2, 2016, https://doi.org/10.5423/RPD.2016.22.2.127
  5. Antifungal activity of the bioactive substance from Bacillus atrophaeus strain HAB-5 and its toxicity assessment on Danio rerio 2017, https://doi.org/10.1016/j.pestbp.2017.06.006
  6. Extracts containing CLPs of Bacillus amyloliquefaciens JN68 isolated from chicken intestines exert antimicrobial effects, particularly on methicillin-resistant Staphylococcus aureus and Listeria monocytogenes vol.14, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5900
  7. Control of Colletotrichum acutatum and Plant Growth Promotion of Pepper by Antagonistic Microorganisms vol.43, pp.4, 2015, https://doi.org/10.4489/KJM.2015.43.4.253
  8. Proteolytic activity of thermophilic Bacillus licheniformis strain SF5-1 for the efficient bioconversion of pork waste to amino acid fertiliser vol.111, 2016, https://doi.org/10.1016/j.ibiod.2016.04.012
  9. Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicus vol.27, pp.5, 2017, https://doi.org/10.1080/09583157.2017.1319910
  10. Biological Control of Apple Anthracnose by Paenibacillus polymyxa APEC128, an Antagonistic Rhizobacterium vol.32, pp.3, 2016, https://doi.org/10.5423/PPJ.OA.01.2016.0015
  11. Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism vol.364, pp.23, 2017, https://doi.org/10.1093/femsle/fnx225
  12. Biological control of growth promoting rhizobacteria against verticillium wilt of pepper plant pp.1336-9563, 2018, https://doi.org/10.2478/s11756-018-00169-9
  13. The MAPKKK CgMck1 Is Required for Cell Wall Integrity, Appressorium Development, and Pathogenicity in Colletotrichum gloeosporioides vol.9, pp.11, 2018, https://doi.org/10.3390/genes9110543
  14. Biopesticides and Their Role in Sustainable Agricultural Production vol.06, pp.06, 2018, https://doi.org/10.4236/jbm.2018.66002