DOI QR코드

DOI QR Code

Preservation Conditions of Aqueous Samples Containing silver Nanomaterials

은나노물질을 포함한 수질시료의 보관조건

  • Kang, Mun Hee (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Park, Sol (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Sang-Woo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Hyun-A (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Byung-Tae (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Eom, Ig-Chun (Division of Risk Assessment, Department of Environmental Health Research, National Institute of Environmental Research) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 강문희 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 박솔 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 이상우 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 김현아 (광주과학기술원 환경공학부) ;
  • 이병태 (광주과학기술원 환경공학부) ;
  • 엄익춘 (국립환경과학원 환경건강부 위해성평가연구과) ;
  • 김순오 (경상대학교 지질과학과 및 기초과학연구소)
  • Received : 2015.03.11
  • Accepted : 2015.04.23
  • Published : 2015.04.30

Abstract

A prerequisite for precise quantification of nanomaterials contained in environmental samples is to prepare suitable preservation conditions of samples. This study was initiated to suggest preservation conditions of aqueous samples for analyses of metal nanomaterials. Variation in the size of silver nanomaterial (cit-AgNP) was observed according to change in various conditions, such as pH, electrolyte concentration, temperature, nanomaterial concentration, and time. Aggregation of AgNP was characterized for each environmental condition, and finally proper preservation conditions of samples were proposed based on experimental results on AgNP aggregation. In addition, the preservation period of sample was computed by the doublet time of AgNP. The results indicate that the aggregation rate of cit-AgNP was close to 0 at the conditions of pH of ${\geq}7$, electrolyte ($Ca(NO_3)_2$) concentration of ${\leq}3mM$, temperature of $4^{\circ}C$, and cit-AgNP concentration of ${\leq}2mg/L$. Furthermore, the experimental results on doublet time of cit-AgNP suggest that maximum preservation period was evaluated to be 15.79~17.53 days when the concentration of 100 nm cit-AgNP is assumed to be $1{\mu}g/L$ which is considered as an environmentally-relevant concentration of engineered nanomaterials. Our results suggest that samples should be preserved at $4^{\circ}C$ and analyzed within 2 weeks.

나노기술의 이용도가 높아지면서 나노물질 유출로 인한 환경오염 문제가 제기되고 있다. 수질시료 내 나노물질의 분석을 위해서는 시료의 교란을 최소화할 수 있는 보관조건 마련이 선결 요건이지만, 아직까지 적합한 보관조건이 제시되고 있지 않다. 이에 본 연구는 citrate로 코팅된 은 나노물질(cit-AgNP)을 대상으로 금속나노물질을 함유한 수질시료의 보관조건을 제시하고자 수행되었다. 이를 위해 시간분해 동적산란법(time-resolved dynamic light scattering)을 이용하여 pH, 배경용액의 농도, 온도, 나노물질의 농도 등과 같은 환경적인 조건과 시간에 따른 cit-AgNP의 크기 변화를 관찰하였다. 실험을 통한 각 환경조건별 AgNP의 응집특성을 해석하고 이러한 결과를 바탕으로 시료의 보관조건을 제시하였다. 그리고 AgNP의 입자농도와 응집속도의 선형적 관계로부터 구한 doublet time을 이용하여 시료의 보관기간을 산정하였다. 실험결과, pH는 7 이상, 배경 용액($Ca(NO_3)_2$)의 농도는 3 mM 이하, 온도는 냉장($4^{\circ}C$) 상태, 그리고 cit-AgNP의 농도는 2 mg/L 이하에서 응집속도가 0에 가까운 값을 나타내었다. 또한 수질시료 내 존재하는 100 nm cit-AgNP의 농도를 환경에 존재할 수 있는 낮은 수준인 $1{\mu}g/L$로 가정한 후 doublet time를 구한 결과, 가능한 시료의 보관기간은 15.79~17.53일 정도인 것으로 조사되었다. 하지만 pH와 배경 용액의 농도 조절은 시료의 변질과 교란이 우려되기 때문에 보관조건으로 일반화하여 제시하는 것은 적절하지 않고, 나노물질 자체의 농도를 조절하는 것은 수질시료 내 나노물질의 농도 등의 분석을 위한 시료의 보관조건으로 바람직하지 않다. 그러므로 본 연구의 결과로부터 일반화하여 제시할 수 있는 보관조건은 냉장($4^{\circ}C$) 상태에서 2주일 정도인 것으로 판단된다.

Keywords

References

  1. Niemeyer, C. M., "Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science," Angew. Chem. Int. Ed., 40(22), 4128-4158(2001). https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  2. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L. and Behra, R., "Toxicity of silver nanoparticles to Chlamydomonas reinhardtii," Environ. Sci. Technol., 42(23), 8959-8964(2008). https://doi.org/10.1021/es801785m
  3. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H. and Cho, M. H., "Antimicrobial effects of silver nanoparticles," Nanomed.-Nanotechnol. Biol. Med., 3(1), 95-101(2007). https://doi.org/10.1016/j.nano.2006.12.001
  4. Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, S. G., Luxton, T. P. and Suidan, M., "An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers," Sci. Total Environ., 408(5), 999-1006(2010). https://doi.org/10.1016/j.scitotenv.2009.11.003
  5. Lim, M. H, Bae, S. J., Lee, Y. J., Lee, S. K. and Hwang, Y. S., "Aggregation Behavior of Silver and TiO2 Nanoparticles in Aqueous Environment," J. Korean Soc. Water Wastewater, 27(5), 571-579(2013). https://doi.org/10.11001/jksww.2013.27.5.571
  6. Huynh, K. A. and Kai, L. C., "Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions," Environ. Sci. Technol., 45(13), 5564-5571(2011). https://doi.org/10.1021/es200157h
  7. Mitrano, D. M., Rimmele, E., Wichser, A., Erni, R., Height, M. and Nowack, B., "Presence of Nanoparticles in Wash Water from Conventional Silver and Nano-silver Textiles," ACS nano, 8(7), 7208-7219(2014). https://doi.org/10.1021/nn502228w
  8. Farkas, J., Christian, P., Gallego-Urrea, J. A., Roos, N., Hassellov, M., Tollefsen, K. E. and Thomas, K. V., "Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells," Aquat. Toxicol., 101 (1), 117-125(2011). https://doi.org/10.1016/j.aquatox.2010.09.010
  9. He, D., Dorantes-Aranda, J. J. and Waite, T. D., "Silver Nano particle-Algae Interactions: Oxidative Dissolution, Reactive Oxygen Species Generation and Synergistic Toxic Effects," Environ. Sci. Technol., 46(16), 8731-8738(2012). https://doi.org/10.1021/es300588a
  10. Kiser, M. A., Ladner, D. A., Hristovski, K. D. and Westerhoff, P. K., "Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: implications for testing protocol and environmental fate," Environ. Sci. Technol., 46(13), 7046-7053(2012). https://doi.org/10.1021/es300339x
  11. Brar, S. K., Verma, M., Tyagi, R. D. and Surampalli, R. Y., "Engineered nanoparticles in wastewater and wastewater sludge-Evidence and impacts," Waste Manage., 30(3), 504-520(2010). https://doi.org/10.1016/j.wasman.2009.10.012
  12. Gondikas, A. P., Morris, A., Reinsch, B. C., Marinakos, S. M., Lowry, G. V. and Hsu-Kim, H., "Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation," Environ. Sci. Technol., 46(13), 7037-7045 (2012). https://doi.org/10.1021/es3001757
  13. Umh, H. N., Roh, J. K., Lee, B. C., Park, S. M., Yi, J. H. and Kim, Y. H., "Case studies for nanomaterials exposure to environmental media," Korean Chem. Eng. Res., 50(6), 1056-1063(2012).
  14. Gottschalk, F., Ort, C., Scholz, R. W. and Nowack, B., "Engineered nanomaterials in rivers-Exposure scenarios for Switzerland at high spatial and temporal resolution," Environ. Pollut., 159(12), 3439-3445(2011). https://doi.org/10.1016/j.envpol.2011.08.023
  15. Kim, S. W., Lee, W. M., Shin, Y. J. and An, Y. J., "Ecotoxicity Studies of Photoactive Nanoparticles Exposed to Ultraviolet Light," J. Korean Soc. Environ. Eng., 34(1), 63-71(2012). https://doi.org/10.4491/KSEE.2012.34.1.063
  16. King, S. M. and Jarvie, H. P., "Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions," Environ. Sci. Technol., 46(13), 6959-6967(2012). https://doi.org/10.1021/es2034087
  17. Badawy, A. M. E., Luxton, T. P., Silva, R. G., Scheckel, K. G., Suidan, M. T. and Tolaymat, T. M., "Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions," Environ. Sci. Technol., 44(4), 1260-1266(2010). https://doi.org/10.1021/es902240k
  18. Piccapietra, F., Sigg, L. and Behra, R., "Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater," Environ. Sci. Technol., 46(2), 818-825 (2011).
  19. Levard, C., Hotze, E. M., Lowry, G. V. and Brown Jr, G. E., "Environmental transformations of silver nanoparticles: impact on stability and toxicity," Environ. Sci. Technol., 46 (13), 6900-6914(2012). https://doi.org/10.1021/es2037405
  20. Adegboyega, N. F., Sharma, V. K., Siskova, K., Zboril, R., Sohn, M., Schultz, B. J. and Banerjee, S., "Interactions of aqueous $Ag^+$ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability," Environ. Sci. Technol., 47(2), 757-764(2012). https://doi.org/10.1021/es302305f
  21. Thio, B. J. R., Montes, M. O., Mahmoud, M. A., Lee, D. W., Zhou, D. and Keller, A. A., "Mobility of capped silver nanoparticles under environmentally relevant conditions," Environ. Sci. Technol., 46(13), 6985-6991(2011). https://doi.org/10.1021/es203596w
  22. Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T. and Grassian, V. H., "Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid," Langmuir, 27(10), 6059-6068(2011). https://doi.org/10.1021/la200570n
  23. Zhang, Y., Chen, Y., Westerhoff, P. and Crittenden, J., "Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles," Water Res., 43(17), 4249-4257 (2009). https://doi.org/10.1016/j.watres.2009.06.005
  24. Chen, K. L. and Elimelech, M., "Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties," Environ. Sci. Technol., 43(19), 7270-7276(2009). https://doi.org/10.1021/es900185p
  25. Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K. and Crittenden, J. C., "Stability of commercial metal oxide nanoparticles in water," Water Res., 42(8), 2204-2212(2008). https://doi.org/10.1016/j.watres.2007.11.036
  26. Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. and Tufenkji, N., "Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions," Environ. Sci. Technol., 44(17), 6532-6549 (2010). https://doi.org/10.1021/es100598h
  27. Liu, J., Legros, S., Von der Kammer, F. and Hofmann, T., "Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles," Environ. Sci. Technol., 47(9), 4113-4120(2013). https://doi.org/10.1021/es302447g
  28. Li, X., Lenhart, J. J. and Walker, H. W., "Aggregation kinetics and dissolution of coated silver nanoparticles," Langmuir, 28(2), 1095-1104(2011). https://doi.org/10.1021/la202328n
  29. Li, X. and Lenhart, J. J., "Aggregation and dissolution of silver nanoparticles in natural surface water," Environ. Sci. Technol., 46(10), 5378-5386(2012). https://doi.org/10.1021/es204531y
  30. Liu, J. and Hurt, R. H., "Ion release kinetics and particle persistence in aqueous nano-silver colloids," Environ. Sci. Technol., 44(6), 2169-2175(2010). https://doi.org/10.1021/es9035557
  31. Dobias, J. and Bernier-Latmani, R., "Silver release from silver nanoparticles in natural waters," Environ. Sci. Technol., 47(9), 4140-4146(2013). https://doi.org/10.1021/es304023p
  32. Pace, H. E., Rogers, N. J., Jarolimek, C., Coleman, V. A., Higgins, C. P. and Ranville, J. F., "Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry," Anal. Chem., 83(24), 9361-9369(2011). https://doi.org/10.1021/ac201952t
  33. Domingos, R. F., Baalousha, M. A., Ju-Nam, Y., Reid, M. M., Tufenkji, N., Lead, J. R., Leppard, G. G. and Wilkinson, K. J., "Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes," Environ. Sci. Technol., 43(19), 7277-7284(2009). https://doi.org/10.1021/es900249m
  34. Filella, M., Zhang, J., Newman, M. E. and Buffle, J., "Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations," Colloids Surf., A, 120(1), 27-46(1997). https://doi.org/10.1016/S0927-7757(96)03677-1
  35. Holthoff, H., Egelhaaf, S. U., Borkovec, M., Schurtenberger, P. and Sticher, H., "Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering," Langmuir, 12(23), 5541-5549(1996). https://doi.org/10.1021/la960326e
  36. Chen, K. L., Mylon, S. E. and Elimelech, M., "Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes," Environ. Sci. Technol., 40 (5), 1516-1523(2006). https://doi.org/10.1021/es0518068
  37. Chen, K. L. and Elimelech, M., "Aggregation and deposition kinetics of fullerene (C60) nanoparticles," Langmuir, 22(26), 10994-11001(2006). https://doi.org/10.1021/la062072v
  38. Liu, J., Legros, S., Ma, G., Veinot, J. G., Von der Kammer, F. and Hofmann, T., "Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles," Chemosphere, 87(8), 918-924(2012). https://doi.org/10.1016/j.chemosphere.2012.01.045
  39. Kaszuba, M., McKnight, D., Connah, M. T., McNeil-Watson, F. K. and Nobbmann, U., "Measuring sub nanometre sizes using dynamic light scattering," J. Nanopart. Res., 10(5), 823-829(2008). https://doi.org/10.1007/s11051-007-9317-4
  40. Camli, S. T., Buyukserin, F., Balci, O. and Budak, G. G., "Size controlled synthesis of sub-100nm monodisperse poly (methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization," J. Colloid Interface Sci., 344(2), 528-532(2010). https://doi.org/10.1016/j.jcis.2010.01.041
  41. Li, Y., Zhang, Q., Zhao, X., Yu, P., Wu, L. and Chen, D., "Enhanced electrochemical performance of polyaniline/ sulfonated polyhedral oligosilsesquioxane nanocomposites with porous and ordered hierarchical nanostructure," J. Mater. Chem., 22(5), 1884-1892(2012). https://doi.org/10.1039/C1JM13359D
  42. Li, X. A., Lenhart, J. J. and Walker, H. W., "Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles," Langmuir, 26(22), 16690-16698(2010). https://doi.org/10.1021/la101768n
  43. Balnois, E., Wilkinson, K. J., Lead, J. R. and Buffle, J., "Atomic force microscopy of humic substances: effects of pH and ionic strength," Environ. Sci. Technol., 33(21), 3911-3917(1999). https://doi.org/10.1021/es990365n
  44. Mylon, S. E., Chen, K. L. and Elimelech, M., "Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: Implications to iron depletion in estuaries," Langmuir, 20(21), 9000-9006 (2004). https://doi.org/10.1021/la049153g
  45. Spark, K. M. and Swift, R. S., "Effect of soil composition and dissolved organic matter on pesticide sorption," Sci. Total Environ., 298(1), 147-161(2002). https://doi.org/10.1016/S0048-9697(02)00213-9
  46. Gottschalk, F., Sun, T. and Nowack, B., "Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies," Environ. Pollut., 181, 287-300(2013). https://doi.org/10.1016/j.envpol.2013.06.003