Browse > Article
http://dx.doi.org/10.4491/KSEE.2015.37.4.218

Preservation Conditions of Aqueous Samples Containing silver Nanomaterials  

Kang, Mun Hee (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
Park, Sol (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
Lee, Sang-Woo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
Kim, Hyun-A (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
Lee, Byung-Tae (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
Eom, Ig-Chun (Division of Risk Assessment, Department of Environmental Health Research, National Institute of Environmental Research)
Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
Publication Information
Abstract
A prerequisite for precise quantification of nanomaterials contained in environmental samples is to prepare suitable preservation conditions of samples. This study was initiated to suggest preservation conditions of aqueous samples for analyses of metal nanomaterials. Variation in the size of silver nanomaterial (cit-AgNP) was observed according to change in various conditions, such as pH, electrolyte concentration, temperature, nanomaterial concentration, and time. Aggregation of AgNP was characterized for each environmental condition, and finally proper preservation conditions of samples were proposed based on experimental results on AgNP aggregation. In addition, the preservation period of sample was computed by the doublet time of AgNP. The results indicate that the aggregation rate of cit-AgNP was close to 0 at the conditions of pH of ${\geq}7$, electrolyte ($Ca(NO_3)_2$) concentration of ${\leq}3mM$, temperature of $4^{\circ}C$, and cit-AgNP concentration of ${\leq}2mg/L$. Furthermore, the experimental results on doublet time of cit-AgNP suggest that maximum preservation period was evaluated to be 15.79~17.53 days when the concentration of 100 nm cit-AgNP is assumed to be $1{\mu}g/L$ which is considered as an environmentally-relevant concentration of engineered nanomaterials. Our results suggest that samples should be preserved at $4^{\circ}C$ and analyzed within 2 weeks.
Keywords
Aqueous Sample; Preservation Condition; Metal Nanomaterial; Citrate Coated Silver Nanomaterial; Aggregation Characteristics; Doublet Time;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lim, M. H, Bae, S. J., Lee, Y. J., Lee, S. K. and Hwang, Y. S., "Aggregation Behavior of Silver and TiO2 Nanoparticles in Aqueous Environment," J. Korean Soc. Water Wastewater, 27(5), 571-579(2013).   DOI   ScienceOn
2 Huynh, K. A. and Kai, L. C., "Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions," Environ. Sci. Technol., 45(13), 5564-5571(2011).   DOI   ScienceOn
3 Mitrano, D. M., Rimmele, E., Wichser, A., Erni, R., Height, M. and Nowack, B., "Presence of Nanoparticles in Wash Water from Conventional Silver and Nano-silver Textiles," ACS nano, 8(7), 7208-7219(2014).   DOI   ScienceOn
4 Farkas, J., Christian, P., Gallego-Urrea, J. A., Roos, N., Hassellov, M., Tollefsen, K. E. and Thomas, K. V., "Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells," Aquat. Toxicol., 101 (1), 117-125(2011).   DOI   ScienceOn
5 He, D., Dorantes-Aranda, J. J. and Waite, T. D., "Silver Nano particle-Algae Interactions: Oxidative Dissolution, Reactive Oxygen Species Generation and Synergistic Toxic Effects," Environ. Sci. Technol., 46(16), 8731-8738(2012).   DOI   ScienceOn
6 Kiser, M. A., Ladner, D. A., Hristovski, K. D. and Westerhoff, P. K., "Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: implications for testing protocol and environmental fate," Environ. Sci. Technol., 46(13), 7046-7053(2012).   DOI   ScienceOn
7 Brar, S. K., Verma, M., Tyagi, R. D. and Surampalli, R. Y., "Engineered nanoparticles in wastewater and wastewater sludge-Evidence and impacts," Waste Manage., 30(3), 504-520(2010).   DOI   ScienceOn
8 Adegboyega, N. F., Sharma, V. K., Siskova, K., Zboril, R., Sohn, M., Schultz, B. J. and Banerjee, S., "Interactions of aqueous $Ag^+$ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability," Environ. Sci. Technol., 47(2), 757-764(2012).   DOI
9 Thio, B. J. R., Montes, M. O., Mahmoud, M. A., Lee, D. W., Zhou, D. and Keller, A. A., "Mobility of capped silver nanoparticles under environmentally relevant conditions," Environ. Sci. Technol., 46(13), 6985-6991(2011).   DOI
10 Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T. and Grassian, V. H., "Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid," Langmuir, 27(10), 6059-6068(2011).   DOI   ScienceOn
11 Zhang, Y., Chen, Y., Westerhoff, P. and Crittenden, J., "Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles," Water Res., 43(17), 4249-4257 (2009).   DOI   ScienceOn
12 Chen, K. L. and Elimelech, M., "Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties," Environ. Sci. Technol., 43(19), 7270-7276(2009).   DOI   ScienceOn
13 Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K. and Crittenden, J. C., "Stability of commercial metal oxide nanoparticles in water," Water Res., 42(8), 2204-2212(2008).   DOI   ScienceOn
14 Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. and Tufenkji, N., "Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions," Environ. Sci. Technol., 44(17), 6532-6549 (2010).   DOI   ScienceOn
15 Gottschalk, F., Sun, T. and Nowack, B., "Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies," Environ. Pollut., 181, 287-300(2013).   DOI   ScienceOn
16 Balnois, E., Wilkinson, K. J., Lead, J. R. and Buffle, J., "Atomic force microscopy of humic substances: effects of pH and ionic strength," Environ. Sci. Technol., 33(21), 3911-3917(1999).   DOI   ScienceOn
17 Mylon, S. E., Chen, K. L. and Elimelech, M., "Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: Implications to iron depletion in estuaries," Langmuir, 20(21), 9000-9006 (2004).   DOI   ScienceOn
18 Spark, K. M. and Swift, R. S., "Effect of soil composition and dissolved organic matter on pesticide sorption," Sci. Total Environ., 298(1), 147-161(2002).   DOI   ScienceOn
19 Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L. and Behra, R., "Toxicity of silver nanoparticles to Chlamydomonas reinhardtii," Environ. Sci. Technol., 42(23), 8959-8964(2008).   DOI   ScienceOn
20 Niemeyer, C. M., "Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science," Angew. Chem. Int. Ed., 40(22), 4128-4158(2001).   DOI
21 Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H. and Cho, M. H., "Antimicrobial effects of silver nanoparticles," Nanomed.-Nanotechnol. Biol. Med., 3(1), 95-101(2007).   DOI   ScienceOn
22 Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, S. G., Luxton, T. P. and Suidan, M., "An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers," Sci. Total Environ., 408(5), 999-1006(2010).   DOI   ScienceOn
23 Kim, S. W., Lee, W. M., Shin, Y. J. and An, Y. J., "Ecotoxicity Studies of Photoactive Nanoparticles Exposed to Ultraviolet Light," J. Korean Soc. Environ. Eng., 34(1), 63-71(2012).   DOI   ScienceOn
24 Gondikas, A. P., Morris, A., Reinsch, B. C., Marinakos, S. M., Lowry, G. V. and Hsu-Kim, H., "Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation," Environ. Sci. Technol., 46(13), 7037-7045 (2012).   DOI   ScienceOn
25 Umh, H. N., Roh, J. K., Lee, B. C., Park, S. M., Yi, J. H. and Kim, Y. H., "Case studies for nanomaterials exposure to environmental media," Korean Chem. Eng. Res., 50(6), 1056-1063(2012).
26 Gottschalk, F., Ort, C., Scholz, R. W. and Nowack, B., "Engineered nanomaterials in rivers-Exposure scenarios for Switzerland at high spatial and temporal resolution," Environ. Pollut., 159(12), 3439-3445(2011).   DOI   ScienceOn
27 King, S. M. and Jarvie, H. P., "Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions," Environ. Sci. Technol., 46(13), 6959-6967(2012).   DOI   ScienceOn
28 Badawy, A. M. E., Luxton, T. P., Silva, R. G., Scheckel, K. G., Suidan, M. T. and Tolaymat, T. M., "Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions," Environ. Sci. Technol., 44(4), 1260-1266(2010).   DOI   ScienceOn
29 Piccapietra, F., Sigg, L. and Behra, R., "Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater," Environ. Sci. Technol., 46(2), 818-825 (2011).
30 Levard, C., Hotze, E. M., Lowry, G. V. and Brown Jr, G. E., "Environmental transformations of silver nanoparticles: impact on stability and toxicity," Environ. Sci. Technol., 46 (13), 6900-6914(2012).   DOI   ScienceOn
31 Liu, J. and Hurt, R. H., "Ion release kinetics and particle persistence in aqueous nano-silver colloids," Environ. Sci. Technol., 44(6), 2169-2175(2010).   DOI   ScienceOn
32 Liu, J., Legros, S., Von der Kammer, F. and Hofmann, T., "Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles," Environ. Sci. Technol., 47(9), 4113-4120(2013).   DOI   ScienceOn
33 Li, X., Lenhart, J. J. and Walker, H. W., "Aggregation kinetics and dissolution of coated silver nanoparticles," Langmuir, 28(2), 1095-1104(2011).   DOI
34 Li, X. and Lenhart, J. J., "Aggregation and dissolution of silver nanoparticles in natural surface water," Environ. Sci. Technol., 46(10), 5378-5386(2012).   DOI   ScienceOn
35 Dobias, J. and Bernier-Latmani, R., "Silver release from silver nanoparticles in natural waters," Environ. Sci. Technol., 47(9), 4140-4146(2013).   DOI   ScienceOn
36 Pace, H. E., Rogers, N. J., Jarolimek, C., Coleman, V. A., Higgins, C. P. and Ranville, J. F., "Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry," Anal. Chem., 83(24), 9361-9369(2011).   DOI
37 Domingos, R. F., Baalousha, M. A., Ju-Nam, Y., Reid, M. M., Tufenkji, N., Lead, J. R., Leppard, G. G. and Wilkinson, K. J., "Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes," Environ. Sci. Technol., 43(19), 7277-7284(2009).   DOI   ScienceOn
38 Filella, M., Zhang, J., Newman, M. E. and Buffle, J., "Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations," Colloids Surf., A, 120(1), 27-46(1997).   DOI   ScienceOn
39 Chen, K. L., Mylon, S. E. and Elimelech, M., "Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes," Environ. Sci. Technol., 40 (5), 1516-1523(2006).   DOI   ScienceOn
40 Holthoff, H., Egelhaaf, S. U., Borkovec, M., Schurtenberger, P. and Sticher, H., "Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering," Langmuir, 12(23), 5541-5549(1996).   DOI   ScienceOn
41 Chen, K. L. and Elimelech, M., "Aggregation and deposition kinetics of fullerene (C60) nanoparticles," Langmuir, 22(26), 10994-11001(2006).   DOI   ScienceOn
42 Liu, J., Legros, S., Ma, G., Veinot, J. G., Von der Kammer, F. and Hofmann, T., "Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles," Chemosphere, 87(8), 918-924(2012).   DOI   ScienceOn
43 Kaszuba, M., McKnight, D., Connah, M. T., McNeil-Watson, F. K. and Nobbmann, U., "Measuring sub nanometre sizes using dynamic light scattering," J. Nanopart. Res., 10(5), 823-829(2008).   DOI
44 Camli, S. T., Buyukserin, F., Balci, O. and Budak, G. G., "Size controlled synthesis of sub-100nm monodisperse poly (methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization," J. Colloid Interface Sci., 344(2), 528-532(2010).   DOI   ScienceOn
45 Li, Y., Zhang, Q., Zhao, X., Yu, P., Wu, L. and Chen, D., "Enhanced electrochemical performance of polyaniline/ sulfonated polyhedral oligosilsesquioxane nanocomposites with porous and ordered hierarchical nanostructure," J. Mater. Chem., 22(5), 1884-1892(2012).   DOI
46 Li, X. A., Lenhart, J. J. and Walker, H. W., "Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles," Langmuir, 26(22), 16690-16698(2010).   DOI   ScienceOn