DOI QR코드

DOI QR Code

Enhanced drought and oxidative stress tolerance in transgenic sweetpotato expressing a codA gene

CodA 고발현 형질전환 고구마의 산화 및 건조 스트레스 내성 증가

  • Park, Sung-Chul (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Myoung Duck (Institute of Genetic Engineering, Hankyong National University (HNU)) ;
  • Kim, Sun Ha (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Yun-Hee (Department of Biology Education, College of Education, Gyeongsang National University) ;
  • Jeong, Jae Cheol (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Haeng-Soon (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kwak, Sang-Soo (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 박성철 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 김명덕 (국립한경대학교 유전공학연구소) ;
  • 김선하 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 김윤희 (국립경상대학교 사범대학 생물교육과) ;
  • 정재철 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 이행순 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 곽상수 (한국생명공학연구원 식물시스템공학연구센터)
  • Received : 2015.03.09
  • Accepted : 2015.03.20
  • Published : 2015.03.31

Abstract

Glycine betaine (GB) is one of the compatible solutes that accumulate in the chloroplasts of certain halotolerant plants under salt or cold stress. The codA gene for choline oxidase, the enzyme that converts choline into GB, has been cloned from a soil bacterium Arthrobacter globiformis. We generated transgenic sweetpotato plants [Ipomoea batatas (L.) Lam] expressing codA gene in chloroplasts under the control of the SWPA2 promoter (referred to as SC plants) and evaluated SC plants under oxidative and drought stresses. SC plants showed enhanced tolerance to methyl viologen (MV)-mediated oxidative stress and drought stress due to induced expression of codA. At $5{\mu}M$ of MV treatment, all SC plants showed enhanced tolerance to MV-mediated oxidative stress through maintaining low ion leakage and increased GB levels compared to wild type plants. When plants were subjected to drought conditions, SC plants showed enhanced tolerance to drought stress through maintaining high relative water contents and increased codA expression compared to wild type plants. These results suggest that the SC plants generated in this study will be useful for enhanced biomass production on global marginal lands.

식물은 여러 환경스트레스에 적응하기 위해 스트레스 내성 유전자의 발현 혹은 proline, trehalose, glycine betaine (GB) 등과 같이 삼투압을 조절하는 compatible solute를 생성하면서 진화해 왔다. GB는 고염, 저온 등 환경스트레스 조건에서 식물의 엽록체에서 축적되는 물질 중 하나이다. 토양 박테리아 Arthrobacter globiformis에서 분리한 choline oxidase (codA) 유전자는 choline을 GB로 전환하는 기능을 한다. 본 연구에서는 산화스트레스 유도성 SWPA2 프로모터의 발현조절 하에 codA 유전자를 엽록체에 과발현시킨 형질전환 고구마 식물체(SC식물체)를 제작하여 다양한 환경스트레스 조건에서의 특성을 분석하였다. SC 식물체는 methyl viologen (MV)에 의한 산화스트레스와 건조 처리 조건에서 내성 증가를 보였다. $5{\mu}M$ MV 처리시 형질전환 식물체는 GB의 함량이 증가하였고 낮은 수준의 이온 전도도를 보였다. 건조 스트레스 조건에서 형질전환 식물체는 codA 유전자의 발현이 증가하였으며, 대조구 보다 높은 상대수분함량을 유지하였다. 따라서 본 연구결과의 SC식물체는 고염, 건조토양 등 조건 불리지역에 재배하면 바이오매스를 증가시킬 수 있을 것으로 예상된다.

Keywords

References

  1. Ahmad R, Kim M, Back KH, Kim HS, Lee HS, Kwon SY, Murata N, Chung WI, Kwak SS (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27:687-698 https://doi.org/10.1007/s00299-007-0479-4
  2. Ahmad R, Lim C, Kwon SY (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49-57 https://doi.org/10.1007/s11816-012-0266-8
  3. Allen RD (1995) Dissection of oxidative stress tolerance using transgneic plants. Plant Physiol 107:1049-1054
  4. Ashraf M, Foolad M. R (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206-216 https://doi.org/10.1016/j.envexpbot.2005.12.006
  5. Blein T, Pautot V, Laufs P (2013) Combinations of mutations sufficient to alter Arabidopsis leaf dissection. Plants 2:230-247 https://doi.org/10.3390/plants2020230
  6. Bray E A (1997) Plant responses to water deficit. Trends Plant Sci 2:48-54
  7. Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344 https://doi.org/10.1371/journal.pone.0037344
  8. Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133-142 https://doi.org/10.1046/j.1365-313X.1997.12010133.x
  9. He C, Yang A, Zhang W, Gao Q, Zhang J (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell Tiss Org 101:65-78 https://doi.org/10.1007/s11240-009-9665-0
  10. Inze D, Van Montagu (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:166-172
  11. Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS (2003) A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol 51:831-838 https://doi.org/10.1023/A:1023045218815
  12. Kim SH, Hamada T (2005) Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotechnol Lett 27:1841-1845 https://doi.org/10.1007/s10529-005-3891-2
  13. Li H, Wang Z, Ke Q, Ji CY, Jeong JC, Lee HS, Lim YP, Xu B, Deng XP, Kwak SS (2014) Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol Biochem 85:31-40 https://doi.org/10.1016/j.plaphy.2014.10.010
  14. Lim S, Yang KS, Kwon SY, Paek KH, Kwak SS, Lee HS (2004) Agrobacterium-mediated genetic transformation and plant regeneration of sweetpotato (Ipomoea batatas). J Plant Biotechnol 31:267-271 https://doi.org/10.5010/JPB.2004.31.4.267
  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474-487 https://doi.org/10.1111/j.1365-313X.2004.02237.x
  17. Park SC, Kim YH, Ji CY, Park S, Jeong JC, Lee HS, Kwak SS (2012) Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One 7:e51502 https://doi.org/10.1371/journal.pone.0051502
  18. Reynolds JF, Smith DM, Lambin EF, Turner BL, Mortimore M, Batterbury SP, Downing TE, Dowlatabadi H, Fernandez RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global Desertification: Building a Science for Dryland Development. Science 316:847-851 https://doi.org/10.1126/science.1131634
  19. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163-171 https://doi.org/10.1046/j.0016-8025.2001.00790.x
  20. Sun YF, Niu LC, Song FQ (2014) Progress on salinization soil restoration method. Int J Ecol 3:30-36 https://doi.org/10.12677/IJE.2014.32005
  21. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14 https://doi.org/10.1007/s00425-003-1105-5
  22. Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R (2009) An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 33:1503-1508 https://doi.org/10.1016/j.biombioe.2009.07.014

Cited by

  1. Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants vol.117, 2017, https://doi.org/10.1016/j.plaphy.2017.05.017