DOI QR코드

DOI QR Code

Characterization of PR-10 gene derived from highly resistant '93-3-98' pear inoculated with scab (Venturia nashicola)

배 검은별무늬병(Venturia nashicola) 고도 저항성 '93-3-98' 유래 PR-10 유전자의 특성

  • Chun, Jae An (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Se Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Kang Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Dae Hyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Choi, In Myong (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Shin, Il Sheob (Pear Research Station, National Institute of Horticultural & Herbal Science, RDA)
  • 천재안 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김세희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 조강희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김대현 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 최인명 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 신일섭 (농촌진흥청 국립원예특작과학원 배 연구소)
  • Received : 2015.03.18
  • Accepted : 2015.03.18
  • Published : 2015.03.31

Abstract

A PyrcpPR-10 gene with differentially expressed was isolated by using the suppression subtractive hybridization assay between '93-3-98' (highly resistant against scab caused by Venturia nashicola) and 'Sweat Skin'(highly susceptible) and analyzed the expression pattern according to organs and cultivars. The full length of PyrcpPR-10 was cloned as 743bp with 480bp's ORP, and was determined to encode a protein of 159 amino acid residues. On analyzing PyrcpPR-10 gene sequence compared with resistant and susceptible cultivars, 'Hwangsilri' (resistant), 'Gamcheonbae' (moderately resistant), 'Wonhwang' (moderately susceptible), 'Niitaka' (highly susceptible), and 'Sweat Skin' (highly susceptible) had identical gene sequence but 'Bartlett' (highly resistant) showed partly different sequences. The deduced amino acid sequence showed 64 ~ 98% homology and had the GXGGXG motif to known amino acid of other plants PR-10 by the BLAST X analysis. Among several organs or tissues, petal was showed highest expression level of PyrcpPR-10 gene followed by leaf, floral axis, bud, and bark. The expression level of PyrcpPR-10 gene was dramatically increased at 24 hr after inoculation in all cultivars and also up-regulated in accordance with resistant degree of cultivars. While resistant cultivars ('Bartlett', '93-3-98', and 'Hwangsilri') induced relatively high expression level of PyrcpPR-10 gene, susceptible cultivars ('Niitaka', and 'Sweat Skin') showed low expression level. PyrcpPR-10 gene is assumed that it is directly connected with defense mechanisms to pear scab.

배 검은별무늬병 고도저항성 '93-3-98'과 고도감수성 '스위트스킨'간의 suppression subtractive hybridization 분석을 통해 '93-3-98'에서 특이적으로 발현되는 pathogenesis-related 10 (PR-10) 유전자를 분리하여 PyrcpPR-10으로 명명하고 기관 및 품종별 발현양상을 분석하였다. 단편염기서열의 rapid amplification of cDNA ends PCR을 통해 PyrcpPR-10 유전자는 전체길이가 743bp이고, 480bp의 ORF와 159개의 아미노산을 가지는 것으로 확인되었다. PyrcpPR-10 유전자의 염기서열은 '황실리'(저항성), '감천배'(중도저항성), '원황'(중도감수성), '신고', '스위트스킨'(고도감수성)은 동일하였으나 'Bartlett'(고도저항성)은 일부 염기서열의 차이를 보였다. BLAST X를 통한 다른 식물 종의 PR-10 아미노산과 비교에서 64 ~ 98%의 상동성을 보였고 공통적으로 GXGGXG motif를 가지고 있었다. 기관 및 조직별 PyrcpPR-10 유전자의 발현량은 꽃잎이 가장 높았으며 다음으로 잎, 꽃대, 눈, 수피 순이었다. 저항성과 감수성 품종에 따른 PyrcpPR-10 유전자의 발현양상은 모든 품종에서 접종 24시간 후 급격히 증가였으며, 특히 'Bartlett', '93-3-98', '황실리'에서 높게 발현되었고 '감천배', '원황'의 경우 저항성 품종에 비해 상대적으로 낮았으며, 고도 감수성 '신고', '스위트스킨'은 발현이 가장 낮았다. 배에서 분리한 PyrcpPR-10 유전자는 검은별무늬병 저항성에 직접 연관되는 것으로 추정된다.

Keywords

References

  1. Atkinson RG, Perry J, Matsui T, Ross GS, Macrae EA (1996) A stress-, pathogenesis-, and allergen-related cDNA in apple fruit is also ripening-related. NZ J Crop Hort. Sci 24 : 103-107 https://doi.org/10.1080/01140671.1996.9513941
  2. Bantignies B, Seguin J, Muzac I, Dedaldechamp F, Gulick P, Ibrahim R (2000) Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol 42 : 871-881 https://doi.org/10.1023/A:1006475303115
  3. Borsics T and Lados M (2002) Dodder infection induces the expression of a pathogenesis-related gene of the family PR10 in alfalfa. J Exp Bot 53 : 1831-1832 https://doi.org/10.1093/jxb/erf039
  4. Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Scheiner O, Breitenbach M (1989) The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J 8 : 1935-1938
  5. Bufe A, Spangfort MD, Kahlert H, Schlaak M, Becker W-M (1996) The major birch pollen allergen, Betv1, shows ribonuclease activity. Planta 199 : 413-415
  6. Faize M, Faize L, Ishizaka M, Ishii H (2004) Expression of potential defense responses of Asian and European pears to infection with Venturia nashicola. Physiol Mol Plant Pathol 64 : 319-330 https://doi.org/10.1016/j.pmpp.2004.09.009
  7. Flores T, Alape-Giron A, Flores-Diaz M, Flores HE (2002) Ocatin. A novel tuber storage protein from the andean tuber crop oca with antibacterial and antifungal activities. Plant Physiol 128 : 1291-1302 https://doi.org/10.1104/pp.010541
  8. Fujimoto Y, Nagata R, Fukasawa H, Yano K, Azuma M, Iida A, Sugimoto S, Shudo K, Hashimoto Y (1998) Purification and cDNA cloning of cytokinin-specific binding protein from mung bean (Vigna radiata). Eur J Biochem 258 : 794-802 https://doi.org/10.1046/j.1432-1327.1998.2580794.x
  9. Iandolino A, da Silva FG, Lim H, Choi H, Williams L, Cook D (2004) High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L.). Plant Mol Bio Rep 22 : 269-278 https://doi.org/10.1007/BF02773137
  10. Ishii H, Udagawa H, Nishimoto S, Tsuda T, Nakashima H (1992) Scab resistance in pear species and cultivars. Acta Phytopathol Entomol Hung 27 : 293-298
  11. Kim SH, Koh GC, Hwang B, Lee HJ and, Hong SW (2009) Identification of Differential Gene Expression in Juvenile vs. Mature Leaves of Pear (Pyrus pyrifolia) by Using Annealing Control Primer. J. Korea. Soc. Appl. Biol. Chem 52 : 121-127
  12. Liu J-J and Ekramoddoullah AK (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68 : 3-13 https://doi.org/10.1016/j.pmpp.2006.06.004
  13. Liu J-J, Ekramoddoullah AK, Piggott N, Zamani A (2005) Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta 221 : 159-169 https://doi.org/10.1007/s00425-004-1428-x
  14. Liu X, Huang B, Lin J, Fei J, Chen Z, Pang Y, Sun X, Tang K (2006) A novel pathogenesis-related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress-and pathogen-inducible. J Plant Physiol 163 : 546-556 https://doi.org/10.1016/j.jplph.2005.04.031
  15. Lotan T, Ori N, Fluhr R (1989) Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1 : 881-887 https://doi.org/10.1105/tpc.1.9.881
  16. Moiseyev GP, Beintema JJ, Fedoreyeva LI, Yakovlev GI (1994) High sequence similarity between a ribonuclease from ginseng calluses and fungus-elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonucleases. Planta 193 : 470-472
  17. Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37 : 186-198 https://doi.org/10.1046/j.1365-313X.2003.01951.x
  18. Park P, Ishii H, Adachi Y, Kanematsu S, Ieki H, Umemoto S (2000) Infection behavior of Venturia nashicola, the cause of scab on Asian pears. Phytopathology 90 : 1209-1216 https://doi.org/10.1094/PHYTO.2000.90.11.1209
  19. Robert N, Ferran J, Breda C, Coutos-Thevenot P, Boulay M, Buffard D, Esnault R (2001) Molecular characterization of the incompatible interaction of Vitis vinifera leaves with Pseudomonas syringae pv. pisi: Expression of genes coding for stilbene synthase and class 10 PR protein. Eur J Plant Pathol 107 : 249-261 https://doi.org/10.1023/A:1011241001383
  20. Rozen S, Skaletsky HJ (1998) Primer 3. Code available at http://www-enome.wi.mit.edu/genome_software/other/primer3.html.
  21. Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop-a common motif in ATP-and GTP-binding proteins. Trend Biochem Sci 15 : 430-434 https://doi.org/10.1016/0968-0004(90)90281-F
  22. Sels J, Mathys J, De Coninck B, Cammue B, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46 : 941-950 https://doi.org/10.1016/j.plaphy.2008.06.011
  23. Shin IS, Bae KM, Nam GY, Kang B-C, Chun J, Cho KH, Kim SH, Choi HS, Kim HR, Hwang HS (2012) Identification of genes induced by Venturia nashicola in indigenous Korean pear 'Hwangsilri'. Hort. Environ. Biotechnol. 53 : 513-520 https://doi.org/10.1007/s13580-012-0125-0
  24. Sikorski MM, Biesiadka J, Kasperska AE, Kopci'nska J, Lotocka B, Golinowski W, Legocki AB (1999) Expression of genes encoding PR10 class pathogenesis-related proteins is inhibited in yellow lupine root nodules. Plant Sci 149 : 125-137 https://doi.org/10.1016/S0168-9452(99)00148-X
  25. Somssich IE, Schmelzer E, Bollmann J, Hahlbrock K (1986) Rapid activation by fungal elicitor of genes encoding "pathogenesis-related" proteins in cultured parsley cells. PNAS 83 : 2427-2430 https://doi.org/10.1073/pnas.83.8.2427
  26. Srivastava S, Emery RN, Kurepin LV, Reid DM, Fristensky B, Kav NN (2006) Pea PR 10.1 is a ribonuclease and its transgenic expression elevates cytokinin levels. Plant Growth Regul 49 : 17-25 https://doi.org/10.1007/s10725-006-0022-6
  27. Srivastava S, Fristensky B, Kav NN (2004) Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol 45 : 1320-1324 https://doi.org/10.1093/pcp/pch137
  28. Swoboda I, Hoffmann-Sommergruber K, O'Riordain G, Scheiner O, Heberle-Bors E, Vicente O (1996) Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiol Plant 96 : 433-438 https://doi.org/10.1111/j.1399-3054.1996.tb00455.x
  29. Van Loon L and Van Strien E (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Path 55 : 85-97 https://doi.org/10.1006/pmpp.1999.0213
  30. Wen J, Vanek-Krebitz M, Hoffmann-Sommergruber K, Scheiner O, Breiteneder H (1997) The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Mol Phylogenet Evol 8 : 317-333 https://doi.org/10.1006/mpev.1997.0447
  31. Wu F, Yan M, Li Y, Chang S, Song X, Zhou Z, Gong W (2003) cDNA cloning, expression, and mutagenesis of a PR-10 protein SPE-16 from the seeds of Pachyrrhizus erosus. BBRC 312 : 761-766
  32. Xie Y-R, Chen Z-Y, Brown RL, Bhatnagar D (2010) Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays. J Plant Physiol 167 : 121-130 https://doi.org/10.1016/j.jplph.2009.07.004
  33. Yan Q, Qi X, Jiang Z, Yang S, Han L (2008) Characterization of a pathogenesis-related class 10 protein (PR-10) from Astragalus mongholicus with ribonuclease activity. Plant Physiol Biochem 46 : 93-99 https://doi.org/10.1016/j.plaphy.2007.10.002
  34. Zheng Q-L and Ishii H (2009) Molecular cloning and expression analysis of genes related to phosphatidic acid synthesis in Japanese pear leaves inoculated with Venturia nashicola. J Gen Plant Pathol 75 : 413-421 https://doi.org/10.1007/s10327-009-0201-1
  35. Zhou X-J, Lu S, Xu Y-H, Wang J-W, Chen X-Y (2002) A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Sci 162 : 629-636 https://doi.org/10.1016/S0168-9452(02)00002-X