DOI QR코드

DOI QR Code

Cure Behavior and Tensile Properties of Ethylidene Norbornene/endo-Dicyclopentadiene Blends

Ethylidene Norbornene/endo-Dicyclopentadiene 블렌드의 경화 거동 및 인장 특성

  • Jung, Jong Ki (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Choi, Jung Hwa (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Yang, Guang (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Park, Jongmoon (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Kim, Donghak (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Kim, Seonggil (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong Keun (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Oh, Myung-Hoon (Department of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Bongsuk (Thinker Route Co., LTD, Gumi Electronics & Information Technology Research Institute) ;
  • Bang, Daesuk (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
  • 정종기 (금오공과대학교 에너지융합소재공학부) ;
  • 최정화 (금오공과대학교 에너지융합소재공학부) ;
  • 양광 (금오공과대학교 에너지융합소재공학부) ;
  • 박종문 (금오공과대학교 에너지융합소재공학부) ;
  • 김동학 (금오공과대학교 에너지융합소재공학부) ;
  • 김성길 (금오공과대학교 에너지융합소재공학부) ;
  • 이종근 (금오공과대학교 에너지융합소재공학부) ;
  • 오명훈 (금오공과대학교 신소재시스템공학부) ;
  • 김봉석 (씽크루트) ;
  • 방대석 (금오공과대학교 에너지융합소재공학부)
  • Received : 2015.01.28
  • Accepted : 2015.02.10
  • Published : 2015.05.25

Abstract

Ethylidene norbornene (ENB) and its blends with endo-dicyclopentadiene (endo-DCPD) were prepared and reacted via the ring-opening metathesis polymerization (ROMP) reaction with the $1^{st}$ and $2^{nd}$ generation Grubbs' catalysts. Dynamic exothermic behaviors during ROMP and tensile properties after ROMP were evaluated using a differential scanning calorimeter (DSC) and a universal testing machine (UTM) for the samples, respectively. It revealed that the ROMP rate was accelerated with the less contents of endo-DCPD and under the $2^{nd}$ generation catalyst. Also, the addition of endo-DCPD and the $1^{st}$ generation catalyst resulted in higher tensile modulus and strength but lower toughness. Gel fraction measurement and fracture surface observation were made to understand the tensile properties.

Ethylidene norbornene(ENB)과 endo-dicyclopentadiene(endo-DCPD) 블렌드를 $1^{st}$ generation과 $2^{nd}$ generation Grubbs 촉매 하에서 ring-opening metathesis polymerization(ROMP)으로 제조하였다. ROMP 과정을 이해하기 위하여 시차주사열분석기(DSC)로 동적 발열거동을 분석하였으며, 반응 후 만능시험기(UTM)로 인장특성을 조사하였다. 반응속도는 endo-DCPD의 양이 적을수록 그리고 $2^{nd}$ generation 촉매 하에서 더 빨라졌다. 또한 endo-DCPD를 첨가할수록 그리고 $1^{st}$ generation 촉매 시스템에서 인장탄성률과 강도는 더 높은 값을 보였으나 강인성은 감소하였다. 이와 같은 인장특성의 변화를 젤 분율 측정과 파단면 관찰을 통하여 자세히 설명하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. M. R. Buchmeiser, Chem. Rev., 100, 1565 (2000). https://doi.org/10.1021/cr990248a
  2. M. Weck, J. J. Jackiw, R. R. Rossi, P. S. Weiss, and R. H. Grubbs, J. Am. Chem. Soc., 121, 4088 (1999). https://doi.org/10.1021/ja983297y
  3. T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 34, 18 (2001). https://doi.org/10.1021/ar000114f
  4. L. Matejka, C. Houtoman, and C. W. Macosko, J. Appl. Polym. Sci., 30, 2787 (1985). https://doi.org/10.1002/app.1985.070300707
  5. H. Ng, I. Manas-Zloczower, and M. Shmorhun, Polym. Eng. Sci., 34, 921 (1994). https://doi.org/10.1002/pen.760341109
  6. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, Nature, 409, 794 (2001). https://doi.org/10.1038/35057232
  7. T. A. Davidson and K. B. Wagener, J. Mol. Catal. A:Chem., 133, 67 (1998). https://doi.org/10.1016/S1381-1169(98)00091-0
  8. V. Dragutan, A. T. Balaban, and M. Dimonie, Olefin Metathesis and Ring Opening Polymerization of Cyclo-olefins, Wiley-Interscience, New York, 1985.
  9. D. R. Kelsey, H. H. Chuah, R. H. Ellison, D. L. Handlin Jr, and B. M. Scardino, J. Polym. Sci., Part A: Polym. Chem., 35, 3049 (1997). https://doi.org/10.1002/(SICI)1099-0518(199710)35:14<3049::AID-POLA25>3.0.CO;2-H
  10. P. R. Khoury, J. D. Goddard, and W. Tam, Tetrahedron., 60, 8103 (2004). https://doi.org/10.1016/j.tet.2004.06.100
  11. A. Bell, Catalysis in Polymer Synthesis, ACS Symp. Ser., American Chemical Society, Washington DC, 1992.
  12. R. A. Fisher and R. H. Grubbs, Makromol. Chem.-Macromol. Symp., 63, 271 (1992). https://doi.org/10.1002/masy.19920630120
  13. K. J. Ivin and J. C. Mol, Olefin Metathesis and Metathesis Polymerization, Academic Press, San Diego, CA, 1997.
  14. S. Hayano, H. Kurakata, Y. Tsunogae, Y. Nakayama, Y. Sato, and H. Yasuda, Macromolecules, 36, 7422 (2003). https://doi.org/10.1021/ma034611y
  15. J. H. Oskam, H. H. Fox, K. B. Yap, D. H. McConville, R. O'Dell, B. J. Lichtenstein, and R. R. Schrock, J. Organometal. Chem., 459, 185 (1993). https://doi.org/10.1016/0022-328X(93)86071-O
  16. Y. Schrodi and R. L. Pederson, Aldrichim. Acta, 40, 45 (2007).
  17. G. O. Wilson, K. A Porter, H. Weissman, S. R. White, N. R. Sottos, and J. S. Moore, Adv. Synth. Catal., 351, 1817 (2009). https://doi.org/10.1002/adsc.200900134
  18. P. Schwab, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc., 118, 100 (1996). https://doi.org/10.1021/ja952676d
  19. X. Sheng, J. K. Lee, and M. R. Kessler, Polymer, 50, 1264 (2009). https://doi.org/10.1016/j.polymer.2009.01.021
  20. X. Liu, J. K. Lee, S. H. Yoon, and M. R. Kessler, J. Appl. Polym. Sci., 101, 1266 (2006). https://doi.org/10.1002/app.23245
  21. J. K. Lee, X. Liu, S. H. Yoon, and M. R. Kessler, J. Polym. Sci., Part B: Polym. Phys., 45, 1771 (2007).
  22. G. C. Huang, J. K. Lee, and M. R. Kessler, Macromol. Mater. Eng., 296, 965 (2011). https://doi.org/10.1002/mame.201100016
  23. A. S. Jones, J. D. Rule, J. S. Moore, S. R. White, and N. R. Sottos, Chem. Mater., 18, 1312 (2006). https://doi.org/10.1021/cm051864s
  24. G. O. Wilson, M. M. Caruso, N. T. Reimer, S. R. White, N. R. Sottos, and J. S. Moore, Chem. Mater., 20, 3288 (2008). https://doi.org/10.1021/cm702933h
  25. Y. Guang and J. K. Lee, Ind. Eng. Chem. Res., 53, 3001 (2014). https://doi.org/10.1021/ie403285q
  26. E. F. Oleinik, Adv. Polym. Sci., 80, 49 (1986). https://doi.org/10.1007/3-540-16423-5_12
  27. W. Jeong and M. R. Kessler, Carbon, 47, 2406 (2009). https://doi.org/10.1016/j.carbon.2009.04.042