DOI QR코드

DOI QR Code

Thermoelectric Composites Based on Carbon Nanotubes and Micro Glass Bubbles

탄소나노튜브 및 마이크로 글래스 버블 기반 열전 복합재

  • Received : 2015.04.22
  • Accepted : 2015.04.28
  • Published : 2015.04.30

Abstract

In this paper, carbon nanotubes (CNTs) and micro glass bubbles (GBs) have been incorporated into a polyamide6 (PA6) matrix to impart thermoelectric properties. The spaces created in the matrix by GBs allows the formation of "segregated" CNT network. The tightly bound CNT network, if controlled properly, can serve as a conductive path for electron transport, while prohibiting phonon transport, which would provide an ideal configuration for thermoelectric applications. The CNTs and GBs were dispersed in a nylon-formic acid solution using horn sonication followed by coagulation in deionized water, and nanocomposite panels were fabricated using a hot press. The performance of nanocomposite panels was evaluated from thermal and electrical conductivities and Seebeck coefficient, and a thermoelectric figure of merit as high as 0.016 was achieved.

본 논문에서는 탄소나노튜브(CNT)와 마이크로 글래스 버블(GB)을 포함한 폴리아마이드 6(PA6) 복합재의 열전 특성을 다뤘다. 복합재에 포함된 GB은 복합재 내에서 큰 공간을 차지하게 되는데, 이때 CNT는 GB가 없는 공간으로 밀려나면서 고밀도로 격리된(segregated) 네트워크를 형성한다. CNT의 분산을 위해, 소니케이션(Sonicatoin)으로 CNT를 분산시킨 PA6, 포름산 용액을 증류수를 이용하여 응고시킨 후 압축성형하여 복합재 판을 제조하였다. 복합재 판의 열전성능을 평가하기 위해서 열전도도, 전기전도도, 제벡계수(Seebeck coefficient) 등을 측정하였고, 최고 0.016의 성능지수를 얻었다.

Keywords

References

  1. Hicks, L.D., and Dresselhaus, M.S., "Effect of Quantum-well Structures on the Thermoelectric Figure of Merit," Physical Review B, Vol. 47, No. 19, 1993, pp. 12727-12731. https://doi.org/10.1103/PhysRevB.47.12727
  2. Harman, T.C., Taylor, P.J., Walsh, M.P., and LaForge, B.E., "Quantum Dot Superlattice Thermoelectric Materials and Devices," Science, Vol. 297, No. 5590, 2002, pp. 2229-2232. https://doi.org/10.1126/science.1072886
  3. Mingo, N., "Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations," Physical Review B, Vol. 68, No. 11, 2003, pp. 113308. https://doi.org/10.1103/PhysRevB.68.113308
  4. Hewitt, C.A., Kaiser, A.B., Roth, S., Craps, M., Czerw, R., and Carroll, D.L., "Multilayered Carbon Nanotube/Polymer Composite Based Thermoelectric Fabrics," Nano Lett, Vol. 8, No. 12, pp. 4428-4432. https://doi.org/10.1021/nl802345s
  5. Yu, C.H., Ryu, Y., Yin, L., and Yang, H., "Modulating Electronic Transport Properties of Carbon Nanotubes to Improve the Thermoelectric Power Factor via Nanoparticle Decoration," ACS Nano, Vol. 5, No. 2, 2011, pp. 1297-1303. https://doi.org/10.1021/nn102999h
  6. Snyder, G.J., and Toberer, E.S., "Complex Thermoelectric Materials," Nature Materials, Vol. 7, 2008, pp. 105-114. https://doi.org/10.1038/nmat2090
  7. Kim, D., Kim, Y., Choi, K., Grunlan, J.C., and Yu, C., "Improved Thermoelectric Behavior of Nanotube-Filled Polymer Composites with Poly (3,4-ethylenedioxythiophene) Poly (styrenesulfonate)," ACS Nano, Vol. 4, No. 1, 2010, pp. 513-523. https://doi.org/10.1021/nn9013577

Cited by

  1. Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method vol.28, pp.4, 2015, https://doi.org/10.7234/composres.2015.28.4.232
  2. 탄소재료가 내첨된 열전도성 복합재의 연구 동향 vol.31, pp.1, 2015, https://doi.org/10.14478/ace.2019.1097