DOI QR코드

DOI QR Code

1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (EC-18) Modulates Th2 Immunity through Attenuation of IL-4 Expression

  • Yoon, Sun Young (ENZYCHEM Lifesciences) ;
  • Kang, Ho Bum (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ko, Young-Eun (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Shin, Su-Hyun (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Young-Jun (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Sohn, Ki-Young (ENZYCHEM Lifesciences) ;
  • Han, Yong-Hae (ENZYCHEM Lifesciences) ;
  • Chong, Saeho (ENZYCHEM Lifesciences) ;
  • Kim, Jae Wha (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2015.02.03
  • Accepted : 2015.03.30
  • Published : 2015.04.30

Abstract

Controlling balance between T-helper type 1 (Th1) and T-helper type 2 (Th2) plays a pivotal role in maintaining the biological rhythm of Th1/Th2 and circumventing diseases caused by Th1/Th2 imbalance. Interleukin 4 (IL-4) is a Th2-type cytokine and often associated with hypersensitivity-related diseases such as atopic dermatitis and allergies when overexpressed. In this study, we have tried to elucidate the function of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (EC-18) as an essential modulator of Th1/Th2 balance. EC-18 has showed an inhibitory effect on the production of IL-4 in a dose-dependent manner. RT-PCR analysis has proved EC-18 affect the transcription of IL-4. By analyzing the phosphorylation status of Signal transducer and activator of transcription 6 (STAT6), which is a transcriptional activator of IL-4 expression, we discovered that EC-18 induced the decrease of STAT6 activity in several stimulated cell lines, which was also showed in STAT6 reporter analysis. Co-treatment of EC-18 significantly weakened atopy-like phenotypes in mice treated with an allergen. Collectively, our results suggest that EC-18 is a potent Th2 modulating factor by regulating the transcription of IL-4 via STAT6 modulation, and could be developed for immune-modulatory therapeutics.

Keywords

References

  1. Kleiman, R., R. W. Miller, F. R. Earle, and I. A. Wolff. 1966. Optically active aceto-triglycerides of oil from Euonymus verrucosus seed. Lipids 1: 286-287. https://doi.org/10.1007/BF02531619
  2. Myher, J. J., A. Kuksis, L. Marai, and P. Sandra. 1988. Identification of the more complex triacylglycerols in bovine milk fat by gas chromatography-mass spectrometry using polar capillary columns. J. Chromatogr. 452: 93-118. https://doi.org/10.1016/S0021-9673(01)81440-0
  3. Limb, J. K., Y. H. Kim, S. Y. Han, and G. J. Jhon. 1999. Isolation and characterization of monoacetyldiglycerides from bovine udder. J. Lipid Res. 40: 2169-2176.
  4. Yang, H. O., S. H. Kim, S. H. Cho, M. G. Kim, J. Y. Seo, J. S. Park, G. J. Jhon, and S. Y. Han. 2004. Purification and structural determination of hematopoietic stem cell-stimulating monoacetyldiglycerides from Cervus nippon (deer antler). Chem. Pharm. Bull. (Tokyo) 52: 874-878. https://doi.org/10.1248/cpb.52.874
  5. Lee, T. S., J. S. Yook, J. S. Lee, C. H. Yoo, J. C. Lee, C. M. Lee, W. H. Lee. 2005 Preparation of glycerol derivatives and intermediates therefor. KR 10-0789323.
  6. Lee, T. S., J. S. Yook, J. S. Lee, C. H. Yoo, J. C. Lee, C. M. Lee, W. H. Lee. 2013 Preparation method of 1-palmitoyl-3-acetylglycerol, and preparation method of 1-palmitoyl-2-linoleoyl-3-acetylglycerol using same. WO 2013/043009 A2.
  7. Yang, H. O., J. S. Park, S. H. Cho, J. Y. Yoon, M. G. Kim, G. J. Jhon, S. Y. Han, and S. H. Kim. 2004. Stimulatory effects of monoacetyldiglycerides on hematopoiesis. Biol. Pharm. Bull. 27: 1121-1125. https://doi.org/10.1248/bpb.27.1121
  8. Kim, M. H., H. M. Chang, T. W. Kim, S. K. Lee, J. S. Park, Y. H. Kim, T. Y. Lee, S. J. Jang, C. W. Suh, T. S. Lee, S. H. Kim, and S. G. Lee. 2009. EC-18, a synthetic monoacetyldiacylglyceride, inhibits hematogenous metastasis of KIGB-5 biliary cancer cell in hamster model. J. Korean Med. Sci. 24: 474-480. https://doi.org/10.3346/jkms.2009.24.3.474
  9. Hong, J. J., Y. Koh, J. S. Park, H. D. Jung, S. H. Kim, T. S. Lee, and M. M. Badellino. 2010. Enteral administration of a synthetic monoacetyldiglyceride improves survival in a murine model of abdominal sepsis. J. Trauma 68: 62-68. https://doi.org/10.1097/TA.0b013e3181c3fede
  10. Shin, I. S., N. R. Shin, C. M. Jeon, O. K. Kwon, K. Y. Sohn, T. S. Lee, J. W. Kim, K. S. Ahn, and S. R. Oh. 2014. EC-18, a synthetic monoacetyldiglyceride (1-palmitoyl-2-linoleoyl-3-acetylglycerol), attenuates the asthmatic response in an aluminum hydroxide/ovalbumin-induced model of asthma1. Int. Immunopharmacol. 18: 116-123. https://doi.org/10.1016/j.intimp.2013.11.006
  11. Coffman, R. L. 2013. Converging discoveries: the first reports of IL-4. J. Immunol. 190: 847-848. https://doi.org/10.4049/jimmunol.1203368
  12. Van Dyken, S. J., and R. M. Locksley. 2013. Interleukin-4-and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu. Rev. Immunol. 31: 317-343. https://doi.org/10.1146/annurev-immunol-032712-095906
  13. Sehra, S., Y. Yao, M. D. Howell, E. T. Nguyen, G. S. Kansas, D. Y. Leung, J. B. Travers, and M. H. Kaplan. 2010. IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation. J. Immunol. 184: 3186-3190. https://doi.org/10.4049/jimmunol.0901860
  14. Hatano, Y., Y. Adachi, P. M. Elias, D. Crumrine, T. Sakai, R. Kurahashi, K. Katagiri, and S. Fujiwara. 2013. The Th2 cytokine, interleukin-4, abrogates the cohesion of normal stratum corneum in mice: implications for pathogenesis of atopic dermatitis. Exp. Dermatol. 22: 30-35. https://doi.org/10.1111/exd.12047
  15. Bao, L., V. Y. Shi, and L. S. Chan. 2012. IL-4 regulates chemokine CCL26 in keratinocytes through the Jak1, 2/Stat6 signal transduction pathway: Implication for atopic dermatitis. Mol. Immunol. 50: 91-97. https://doi.org/10.1016/j.molimm.2011.12.008
  16. Brandt, E. B., and U. Sivaprasad. 2011. Th2 Cytokines and Atopic Dermatitis. J. Clin. Cell. Immunol. 2.
  17. Zhu, N., Y. Gong, X. D. Chen, J. Zhang, F. Long, J. He, J. W. Xia, and L. Dong. 2013. Association between the polymorphisms of interleukin-4, the interleukin-4 receptor gene and asthma. Chin. Med. J. (Engl.) 126: 2943-2951.
  18. Nie, W., Y. Zang, J. Chen, and Q. Xiu. 2013. Association between interleukin-4 receptor alpha chain (IL4RA) I50V and Q551R polymorphisms and asthma risk: an update meta-analysis. PLoS One 8: e69120. https://doi.org/10.1371/journal.pone.0069120
  19. Schuijs, M. J., M. A. Willart, H. Hammad, and B. N. Lambrecht. 2013. Cytokine targets in airway inflammation. Curr. Opin. Pharmacol. 13: 351-361. https://doi.org/10.1016/j.coph.2013.03.013
  20. Egawa, M., K. Mukai, S. Yoshikawa, M. Iki, N. Mukaida, Y. Kawano, Y. Minegishi, and H. Karasuyama. 2013. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 38: 570-580. https://doi.org/10.1016/j.immuni.2012.11.014
  21. Burton, O. T., A. R. Darling, J. S. Zhou, M. Noval-Rivas, T. G. Jones, M. F. Gurish, T. A. Chatila, and H. C. Oettgen. 2013. Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. Mucosal Immunol. 6: 740-750. https://doi.org/10.1038/mi.2012.112
  22. Kaplan, M. H., U. Schindler, S. T. Smiley, and M. J. Grusby. 1996. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4: 313-319. https://doi.org/10.1016/S1074-7613(00)80439-2
  23. Schoenborn, J. R., and C. B. Wilson. 2007. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 96: 41-101. https://doi.org/10.1016/S0065-2776(07)96002-2
  24. Hu, X., and L. B. Ivashkiv. 2009. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31: 539-550. https://doi.org/10.1016/j.immuni.2009.09.002
  25. Wick, K. R., and M. T. Berton. 2000. IL-4 induces serine phosphorylation of the STAT6 transactivation domain in B lymphocytes. Mol. Immunol. 37: 641-652. https://doi.org/10.1016/S0161-5890(00)00088-2
  26. Wu, F., H. Li, L. Jin, X. Li, Y. Ma, J. You, S. Li, and Y. Xu. 2013. Deer antler base as a traditional Chinese medicine: a review of its traditional uses, chemistry and pharmacology. J. Ethnopharmacol. 145: 403-415. https://doi.org/10.1016/j.jep.2012.12.008
  27. Gilbey, A., and J. D. Perezgonzalez. 2012. Health benefits of deer and elk velvet antler supplements: a systematic review of randomised controlled studies. N. Z. Med. J. 125: 80-86.
  28. Mushaben, E. M., E. L. Kramer, E. B. Brandt, G. K. Khurana Hershey, and T. D. Le Cras. 2011. Rapamycin attenuates airway hyperreactivity, goblet cells, and IgE in experimental allergic asthma. J. Immunol. 187: 5756-5763. https://doi.org/10.4049/jimmunol.1102133
  29. Geha, R. S., H. H. Jabara, and S. R. Brodeur. 2003. The regulation of immunoglobulin E class-switch recombination. Nat. Rev. Immunol. 3: 721-732. https://doi.org/10.1038/nri1181
  30. Cookson, W. 2004. The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat. Rev. Immunol. 4: 978-988. https://doi.org/10.1038/nri1500
  31. Li, L., H. H. Lee, J. J. Bell, R. K. Gregg, J. S. Ellis, A. Gessner, and H. Zaghouani. 2004. IL-4 utilizes an alternative receptor to drive apoptosis of Th1 cells and skews neonatal immunity toward Th2. Immunity 20: 429-440. https://doi.org/10.1016/S1074-7613(04)00072-X
  32. Liew, F. Y. 2002. T(H)1 and T(H)2 cells: a historical perspective. Nat. Rev. Immunol. 2: 55-60. https://doi.org/10.1038/nri705
  33. Yang, X. O., H. Zhang, B. S. Kim, X. Niu, J. Peng, Y. Chen, R. Kerketta, Y. H. Lee, S. H. Chang, D. B. Corry, D. Wang, S. S. Watowich, and C. Dong. 2013. The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat. Immunol. 14: 732-740. https://doi.org/10.1038/ni.2633
  34. Knosp, C. A., H. P. Carroll, J. Elliott, S. P. Saunders, H. J. Nel, S. Amu, J. C. Pratt, S. Spence, E. Doran, N. Cooke, R. Jackson, J. Swift, D. C. Fitzgerald, L. G. Heaney, P. G. Fallon, A. Kissenpfennig, and J. A. Johnston. 2011. SOCS2 regulates T helper type 2 differentiation and the generation of type 2 allergic responses. J. Exp. Med. 208: 1523-1531. https://doi.org/10.1084/jem.20101167
  35. Biswas, S. K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11: 889-896. https://doi.org/10.1038/ni.1937
  36. Coffman, R. L. 2006. Origins of the T(H)1-T(H)2 model: a personal perspective. Nat. Immunol. 7: 539-541. https://doi.org/10.1038/ni0606-539
  37. Sykes, A., M. R. Edwards, J. Macintyre, R. A. del, E. Bakhsoliani, M. B. Trujillo-Torralbo, O. M. Kon, P. Mallia, M. McHale, and S. L. Johnston. 2012. Rhinovirus 16-induced IFN-alpha and IFN-beta are deficient in bronchoalveolar lavage cells in asthmatic patients. J. Allergy Clin. Immunol. 129: 1506-1514. https://doi.org/10.1016/j.jaci.2012.03.044
  38. Baraldo, S., M. Contoli, E. Bazzan, G. Turato, A. Padovani, B. Marku, F. Calabrese, G. Caramori, A. Ballarin, D. Snijders, A. Barbato, M. Saetta, and A. Papi. 2012. Deficient antiviral immune responses in childhood: distinct roles of atopy and asthma. J. Allergy Clin. Immunol. 130: 1307-1314. https://doi.org/10.1016/j.jaci.2012.08.005
  39. Huber, J. P., H. J. Ramos, M. A. Gill, and J. D. Farrar. 2010. Cutting edge: Type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J. Immunol. 185: 813-817. https://doi.org/10.4049/jimmunol.1000469

Cited by

  1. PLAG (1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol) Modulates Eosinophil Chemotaxis by Regulating CCL26 Expression from Epithelial Cells vol.11, pp.3, 2015, https://doi.org/10.1371/journal.pone.0151758
  2. Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation vol.49, pp.8, 2015, https://doi.org/10.5483/bmbrep.2016.49.8.020
  3. A novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for improved stability and oral bioavailability of an oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol vol.24, pp.1, 2017, https://doi.org/10.1080/10717544.2017.1344335
  4. Suppressive effect of an aqueous extract of Diospyros kaki calyx on dust mite extract/2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions vol.40, pp.2, 2017, https://doi.org/10.3892/ijmm.2017.3017
  5. Perfluorooctane sulfonate exacerbates mast cell-mediated allergic inflammation by the release of histamine vol.14, pp.2, 2018, https://doi.org/10.1007/s13273-018-0019-z
  6. Comparison of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol-Loaded Self-Emulsifying Granule and Solid Self-Nanoemulsifying Drug Delivery System: Powder Property, Dissolution and Oral Bioavailability vol.11, pp.8, 2015, https://doi.org/10.3390/pharmaceutics11080415
  7. 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) attenuates gemcitabine-induced neutrophil extravasation vol.9, pp.1, 2015, https://doi.org/10.1186/s13578-018-0266-7
  8. Mitigating Effects of 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) on Hematopoietic Acute Radiation Syndrome after Total-Body Ionizing Irradiation in Mice vol.192, pp.6, 2019, https://doi.org/10.1667/rr15440.1