DOI QR코드

DOI QR Code

Molecular Identification of Pooideae, Poaceae in Korea

국내 농경지에 발생하는 포아풀아과 잡초의 분자생물학적 동정

  • Received : 2014.12.18
  • Accepted : 2015.02.03
  • Published : 2015.03.31

Abstract

A universal DNA barcoding for agricultural noxious weeds is a powerful technique for species identification without morphological knowledge, by using short sections of DNA from a specific region of the genome. Two standard barcode markers, chloroplast rbcL and matK, and a supplementary nuclear ribosomal Internal Transcribed Spacer (ITS) region were used to examine the effectiveness of the markers for Pooideae barcoding using 163 individuals of 29 taxa across 16 genera of Korean Pooideae. The rbcL and ITS revealed a good level of amplification and sequencing success while matK did not. Barcode gaps were 78.6% for rbcL, 96.2% for matK, and 91.7% for ITS, respectively. Resolving powers were 89.3% for rbcL, 92.3% for matK, and 79.1% for ITS. The matK obtained the best both barcode gap and resolving power. However, it should be considered not to employ matK for Pooideae barcode because of low rate of PCR amplification and sequencing success. As a single DNA marker, rbcL and ITS were reasonable for Pooideae barcode. Barcode gap and resolving power were increased when ITS was incorporated into the rbcL. The barcode sequences were deposited to the National Center for Biotechnology Information (NCBI) database for public use.

DNA 바코드는 게놈 DNA의 단편을 이용해 형태적 지식없이 종을 동정하는 방법으로 전 세계적으로 최근에 많이 이용하고 있으며 고등식물에서는 엽록체 rbcL과 matK 유전자를 이용하고 있다. 본 연구에서는 표준 식물 바코드마커와 핵 ITS 부위를 이용하여 국내 포아풀아과 잡초 16속 29종 163생태형의 바코드 데이터를 생산하는 것을 목적으로 하였다. 더불어 포아풀아과의 바코드에서 각 마커의 효율성도 조사하였다. 바코드 결과 PCR 증폭과 염기서열 분석성공률은 rbcL에서 가장 높았으며 matK에서 가장 낮았다. 반대로 바코드 갭은 matK에서 가장 높은 반면 rbcL에서 가장 낮았으며, 종 식별 해상력은 matK에서 가장 높고, ITS에서 가장 낮았다. 그러나 바코드 갭과 종 식별 해상력이 가장 높은 matK를 포아풀아과에서 바코드 마커로 이용하는 것은 너무 낮은 PCR 증폭과 염기서열 분석성공률(58.3%) 때문에 고려해야할 것으로 생각된다. 단일마커로 rbcL과 ITS는 포아풀아과의 바코드에 적절하게 이용될 수 있으며, 두 마커를 조합으로 이용하면 공통으로 분석된 샘플에 따라 바코드 갭과 종 식별 해상력을 높일 수 있었다. 포아풀아과의 바코드데이터는 미국의 국립생물공학정보센터에 기탁하여 genbank 번호를 부여받아 공개하였다.

Keywords

References

  1. Aubriot, X., Lowry, P.P., Cruaud, C., Couloux, A. and Haevermans, T. 2013. DNA barcoding in a biodiversity hot spot: potential value for the identification of Malagasy Euphorbia L. listed in CITES Appendices I and II. Mol. Ecol. Res. 13:57-65. https://doi.org/10.1111/1755-0998.12028
  2. CBOL Plant Working Group. 2009. A DNA barcode for land plants. P. Natl. Acad. Sci. USA. 106:12794-12797. https://doi.org/10.1073/pnas.0905845106
  3. Chen, S. and Peterson, P.M. 2006. Vol.22 Poaceae (Gramineae), pp. 1-651. In Flora of China, eds. Z. Y. Wu, et al. Missouri Botanical Garden, CO & Harvard Univ. Herbaria, MA, USA.
  4. Chen, S., Yao, H., Han, J., Liu, C., Song, J., et al. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS one 5:e8613(8611-8618).
  5. Christin, P.A., Besnard, G., Samaritani, E., Duvall, M.R., Hodkinson, T.R., et al. 2008. Oligocene $CO_2$ decline promoted $C_4$ photosynthesis in grasses. Curr. Biol. Suppl. Data: S1-S13.
  6. Ghahramanzadeh, R., Esselink, G., Kodde, L.P., Duistermaat, H., van Valkenburg, J.L.C.H., et al. 2013. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding. Mol. Ecol. Res. 13:21-31. https://doi.org/10.1111/1755-0998.12020
  7. Grass Phylogeny Working Group. 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Gard 88:373-457. https://doi.org/10.2307/3298585
  8. Hebert, P.D.N., Cywinska, A., Ball, S.L. and Waard, J.R.d. 2003. Biological identifications through DNA barcodes. P. R. Soc. London, Series B 270:313-321. https://doi.org/10.1098/rspb.2002.2218
  9. Hilu, K.W., Alice, L.A. and Liang, H. 1999. Phylogeny of Poaceae inferred from matK sequences. Ann. Missouri Bot. Gard. 86:835-851. https://doi.org/10.2307/2666171
  10. Hollingsworth, P.M., Graham, S.W. and Little, D.P. 2011. Choosing and using a plant DNA barcode. PLoS ONE 6:1-13.
  11. Ingram, A.L., Christin, P.A. and Osborne, C.P. 2011. Molecular phylogenies disprove a hypothesized C4 reversion in Eragrostis walteri (Poaceae). Ann. Bot. 107:321-325. https://doi.org/10.1093/aob/mcq226
  12. Johnson, L.A. and Soltis, D.E. 1995. Phylogenetic inference in Saxifragaceae sensu stricto an Gilia (Polemoniaceae) using matK sequences. Ann. Missouri Bot. Gard. 82:149-175. https://doi.org/10.2307/2399875
  13. Kita, Y. and Ito, M. 2000. Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgenus Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Syst. Evol. 225:1-13. https://doi.org/10.1007/BF00985455
  14. Kress, W.J. and Erickson, D.L. 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:e508 https://doi.org/10.1371/journal.pone.0000508
  15. Lee, J. and Hymowitz, T. 2001. A molecular phylogenetic study of the subtribe Glycininae (Leguminosae) derived from the chloroplast DNA rps16 intron sequences. Am. J. Bot. 88:2064-2073. https://doi.org/10.2307/3558432
  16. Lee, J., Kim, C.S. and Lee, I.Y. 2014. Evaluating the Discriminatory Power of DNA Barcodes in Panicoideae, Poaceae. J. Agri. Sci. Tech. B 4:533-544.
  17. Park, S.H., Lee, Y.M., Chung, S.Y., Chang, G.S., Kang, W.C., et al. 2011. Illustrated grasses of Korean (Revised and enlarged edition). Pocheon, Kyonggido, Korea: Korea National Arboretum.
  18. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing evolutionary trees. Mol. Bio. Evol. 4:406-425.
  19. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  20. Theodoridis, S., Stefanaki, A., Tezcan, M., Aki, C., Kokkini, S., et al. 2012. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Ce me-Karaburun Peninsula (Turkey). Mol. Ecol. Res. 12:620-633. https://doi.org/10.1111/j.1755-0998.2012.03129.x
  21. White, T.J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In: Innis, N., Gelfand, D., Sninsky, J., White, T. (Eds.). PCR Protocols: A Guide to Methods and Application. Academic Press, Inc. New York, USA.

Cited by

  1. Phylogenetic analysis of 14 Korean Araliaceae species using chloroplast DNA barcode analysis vol.43, pp.1, 2016, https://doi.org/10.5010/JPB.2016.43.1.82
  2. Discrimination of Echinochloa colona (L.) Link from other Echinochloa Species using DNA Barcode vol.4, pp.3, 2015, https://doi.org/10.5660/WTS.2015.4.3.225
  3. Identification of Effective DNA Barcodes for Triticum Plants through Chloroplast Genome-wide Analysis 2017, https://doi.org/10.1016/j.compbiolchem.2017.09.003