Browse > Article
http://dx.doi.org/10.5660/WTS.2015.4.1.18

Molecular Identification of Pooideae, Poaceae in Korea  

Lee, Jeongran (National Academy of Agricultural Science)
Kim, Chang-Seok (National Academy of Agricultural Science)
Lee, In-Yong (National Academy of Agricultural Science)
Publication Information
Weed & Turfgrass Science / v.4, no.1, 2015 , pp. 18-25 More about this Journal
Abstract
A universal DNA barcoding for agricultural noxious weeds is a powerful technique for species identification without morphological knowledge, by using short sections of DNA from a specific region of the genome. Two standard barcode markers, chloroplast rbcL and matK, and a supplementary nuclear ribosomal Internal Transcribed Spacer (ITS) region were used to examine the effectiveness of the markers for Pooideae barcoding using 163 individuals of 29 taxa across 16 genera of Korean Pooideae. The rbcL and ITS revealed a good level of amplification and sequencing success while matK did not. Barcode gaps were 78.6% for rbcL, 96.2% for matK, and 91.7% for ITS, respectively. Resolving powers were 89.3% for rbcL, 92.3% for matK, and 79.1% for ITS. The matK obtained the best both barcode gap and resolving power. However, it should be considered not to employ matK for Pooideae barcode because of low rate of PCR amplification and sequencing success. As a single DNA marker, rbcL and ITS were reasonable for Pooideae barcode. Barcode gap and resolving power were increased when ITS was incorporated into the rbcL. The barcode sequences were deposited to the National Center for Biotechnology Information (NCBI) database for public use.
Keywords
nrITS; Plant barcode; Pooideae; Resolving power; Standard barcode markers; rbcL; matK; ITS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aubriot, X., Lowry, P.P., Cruaud, C., Couloux, A. and Haevermans, T. 2013. DNA barcoding in a biodiversity hot spot: potential value for the identification of Malagasy Euphorbia L. listed in CITES Appendices I and II. Mol. Ecol. Res. 13:57-65.   DOI
2 CBOL Plant Working Group. 2009. A DNA barcode for land plants. P. Natl. Acad. Sci. USA. 106:12794-12797.   DOI
3 Chen, S. and Peterson, P.M. 2006. Vol.22 Poaceae (Gramineae), pp. 1-651. In Flora of China, eds. Z. Y. Wu, et al. Missouri Botanical Garden, CO & Harvard Univ. Herbaria, MA, USA.
4 Chen, S., Yao, H., Han, J., Liu, C., Song, J., et al. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS one 5:e8613(8611-8618).
5 Christin, P.A., Besnard, G., Samaritani, E., Duvall, M.R., Hodkinson, T.R., et al. 2008. Oligocene $CO_2$ decline promoted $C_4$ photosynthesis in grasses. Curr. Biol. Suppl. Data: S1-S13.
6 Ghahramanzadeh, R., Esselink, G., Kodde, L.P., Duistermaat, H., van Valkenburg, J.L.C.H., et al. 2013. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding. Mol. Ecol. Res. 13:21-31.   DOI
7 Grass Phylogeny Working Group. 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Gard 88:373-457.   DOI
8 Hebert, P.D.N., Cywinska, A., Ball, S.L. and Waard, J.R.d. 2003. Biological identifications through DNA barcodes. P. R. Soc. London, Series B 270:313-321.   DOI
9 Hilu, K.W., Alice, L.A. and Liang, H. 1999. Phylogeny of Poaceae inferred from matK sequences. Ann. Missouri Bot. Gard. 86:835-851.   DOI
10 Hollingsworth, P.M., Graham, S.W. and Little, D.P. 2011. Choosing and using a plant DNA barcode. PLoS ONE 6:1-13.
11 Ingram, A.L., Christin, P.A. and Osborne, C.P. 2011. Molecular phylogenies disprove a hypothesized C4 reversion in Eragrostis walteri (Poaceae). Ann. Bot. 107:321-325.   DOI
12 Johnson, L.A. and Soltis, D.E. 1995. Phylogenetic inference in Saxifragaceae sensu stricto an Gilia (Polemoniaceae) using matK sequences. Ann. Missouri Bot. Gard. 82:149-175.   DOI
13 Kita, Y. and Ito, M. 2000. Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgenus Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Syst. Evol. 225:1-13.   DOI
14 Kress, W.J. and Erickson, D.L. 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:e508   DOI
15 Lee, J. and Hymowitz, T. 2001. A molecular phylogenetic study of the subtribe Glycininae (Leguminosae) derived from the chloroplast DNA rps16 intron sequences. Am. J. Bot. 88:2064-2073.   DOI
16 Lee, J., Kim, C.S. and Lee, I.Y. 2014. Evaluating the Discriminatory Power of DNA Barcodes in Panicoideae, Poaceae. J. Agri. Sci. Tech. B 4:533-544.
17 Park, S.H., Lee, Y.M., Chung, S.Y., Chang, G.S., Kang, W.C., et al. 2011. Illustrated grasses of Korean (Revised and enlarged edition). Pocheon, Kyonggido, Korea: Korea National Arboretum.
18 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing evolutionary trees. Mol. Bio. Evol. 4:406-425.
19 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.   DOI   ScienceOn
20 Theodoridis, S., Stefanaki, A., Tezcan, M., Aki, C., Kokkini, S., et al. 2012. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Ce me-Karaburun Peninsula (Turkey). Mol. Ecol. Res. 12:620-633.   DOI
21 White, T.J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In: Innis, N., Gelfand, D., Sninsky, J., White, T. (Eds.). PCR Protocols: A Guide to Methods and Application. Academic Press, Inc. New York, USA.