DOI QR코드

DOI QR Code

Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens

  • Zhang, Lu (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University) ;
  • Zhu, Qing (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University) ;
  • Liu, Yiping (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University) ;
  • Gilbert, Elizabeth R. (Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University) ;
  • Li, Diyan (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University) ;
  • Yin, Huadong (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University) ;
  • Wang, Yan (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University) ;
  • Yang, Zhiqin (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University) ;
  • Wang, Zhen (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University) ;
  • Yuan, Yuncong (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University) ;
  • Zhao, Xiaoling (Department of Animal Science, Sichuan Agricultural University)
  • Received : 2014.07.23
  • Accepted : 2015.01.12
  • Published : 2015.06.01

Abstract

Improved meat quality and greater muscle yield are highly sought after in high-quality chicken breeding programs. Past studies indicated that polymorphisms of the Perilipin gene (PLIN1) are highly associated with adiposity in mammals and are potential molecular markers for improving meat quality and carcass traits in chickens. In the present study, we screened single nucleotide polymorphisms (SNPs) in all exons of the PLIN1 gene with a direct sequencing method in six populations with different genetic backgrounds (total 240 individuals). We evaluated the association between the polymorphisms and carcass and meat quality traits. We identified three SNPs, located on the 5' flanking region and exon 1 of PLIN1 on chromosome 10 (rs315831750, rs313726543, and rs80724063, respectively). Eight main haplotypes were constructed based on these SNPs. We calculated the allelic and genotypic frequencies, and genetic diversity parameters of the three SNPs. The polymorphism information content (PIC) ranged from 0.2768 to 0.3750, which reflected an intermediate genetic diversity for all chickens. The CC, CT, and TT genotypes influenced the percentage of breast muscle (PBM), percentage of leg muscle (PLM) and percentage of abdominal fat at rs315831750 (p<0.05). Diplotypes (haplotype pairs) affected the percentage of eviscerated weight (PEW) and PBM (p<0.05). Compared with chickens carrying other diplotypes, H3H7 had the greatest PEW and H2H2 had the greatest PBM, and those with diplotype H7H7 had the smallest PEW and PBM. We conclude that PLIN1 gene polymorphisms may affect broiler carcass and breast muscle yields, and diplotypes H3H7 and H2H2 could be positive molecular markers to enhance PEW and PBM in chickens.

Keywords

References

  1. Barrett, J. C. 2009. Haploview: Visualization and analysis of snp genotype data. Cold Spring Harb Protoc. http://dx.doi.org/10.1101/pdb.ip71
  2. Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B (Methodological) 57:289-300.
  3. Bickel, P. E., J. T. Tansey, and M. A. Welte. 2009. Pat proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim. Biophys. Acta. Cell Biol. Lipids 1791:419-440. https://doi.org/10.1016/j.bbalip.2009.04.002
  4. Clark, A. G. 2004. The role of haplotypes in candidate gene studies. Genet. Epidemiol. 27:321-333. https://doi.org/10.1002/gepi.20025
  5. Fan, H. J., X. L. Liu, J. Wang, and S. S. Hou. 2011. Analysis of plin gene pcr-rflp polymorphism and its association with carcass and adipose traits in meat ducks. Acta Agriculturae Boreali-Occidentalis Sinica, 6:004.
  6. Fan, Y., L. Zan, H. Wang, and Y. Yang. 2010. Study on the relationship between polymorphism of plin gene and carcass and meat quality traits in qinchuan cattle. Chin. J. Anim. Vet. Sci. 41: 268-273.
  7. Gandolfi, G., M. Mazzoni, P. Zambonelli, G. Lalatta-Costerbosa, A. Tronca, V. Russo, and R. Davoli. 2011. Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of european cross-breed pigs with different intramuscular fat contents. Meat Sci. 88:631-637. https://doi.org/10.1016/j.meatsci.2011.02.020
  8. Gao, Z. Y., P. P. Lin, Y. N. Yuan, S. S. Zhou, B. F. Liu, J. H. Liu, C. Linag, L. Y. Qiao, and W. Z. Liu. 2012. Study on the polymorphism of plin gene and its association with tail and slaughter traits in sheep. J. Shanxi Agric. Univ. (Natural Science Edition) 32:158-164.
  9. Gu, H. B. and Y. L. Dai. 2011. China "new generalized meaning" agricultural test lead taiwan hongbiao native chicken. Guide to Chinese Poultry 10:41-41.
  10. Kern, P. A., G. Di Gregorio, T. Lu, N. Rassouli, and G. Ranganathan. 2004. Perilipin expression in human adipose tissue is elevated with obesity. J. Clin. Endocrinol. Metab. 89:1352-1358. https://doi.org/10.1210/jc.2003-031388
  11. Kimchi-Sarfaty, C., J. M. Oh, I.-W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, and M. M. Gottesman. 2007. A" silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811):525-528. https://doi.org/10.1126/science.1135308
  12. Kimmel, A. R., D. L. Brasaemle, M. McAndrews-Hill, C. Sztalryd, and C. Londos. 2010. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J. Lipid Res. 51:468-471. https://doi.org/10.1194/jlr.R000034
  13. Lande, R. and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743-756.
  14. Lei, Q. X., Y. Zhou, H. X. Han, G. M. Li, D. G. Cao, F. W. Li, and Y. Lu. 2011. Polymorphism in plin gene intron 5 and its association with carcass and fatness traits in chicken. China Anim. Husb. Vet. Med. 12: 036.
  15. Londos, C., C. Sztalryd, J. T. Tansey, and A. R. Kimmel. 2005. Role of pat proteins in lipid metabolism. Biochimie 87:45-49. https://doi.org/10.1016/j.biochi.2004.12.010
  16. Marcinkiewicz, A., D. Gauthier, A. Garcia, and D. L. Brasaemle. 2006. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J. Biol. Chem. 281:11901-11909. https://doi.org/10.1074/jbc.M600171200
  17. Miura, S., J.-W. Gan, J. Brzostowski, M. J. Parisi, C. J. Schultz, C. Londos, B. Oliver, and A. R. Kimmel. 2002. Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, drosophila, and dictyostelium. J. Biol. Chem. 277:32253-32257. https://doi.org/10.1074/jbc.M204410200
  18. Morris, R. W. and N. L. Kaplan. 2002. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet. Epidemiol. 23:221-233. https://doi.org/10.1002/gepi.10200
  19. Nei, M. and A. Roychoudhury. 1974. Sampling variances of heterozygosity and genetic distance. Genetics 76:379-390.
  20. Petracci, M. and C. Cavani. 2012. Muscle growth and poultry meat quality issues. Nutrients 4:1-12.
  21. Rosa, M. D., A. Gambacorta, B. Nicolaus, B. Chappe, and P. Albrecht. 1983. Isoprenoid ethers; backbone of complex lipids of the archaebacterium sulfolobus solfataricus. Biochim. Biophy. Acta (BBA)-Lipids and Lipid Metabolism 753:249-256. https://doi.org/10.1016/0005-2760(83)90014-0
  22. Rubin, C. J., M. C. Zody, J. Eriksson, J. R. S. Meadows, E. Sherwood, M. T. Webster, L. Jiang, M. Ingman, T. Sharpe, S. Ka, F. Hallbook, F. Besnier, O. Carlborg, B. Bed'hom, M. Tixier-Boichard, P. Jensen, P. Siegel, K. Lindblad-Toh, and L. Andersson. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464:587-591. https://doi.org/10.1038/nature08832
  23. Ruiz, J. R., E. Larrarte, J. Margareto, R. Ares, P. Alkorta, and I. Labayen. 2011. Preliminary findings on the role of PLIN1 polymorphisms on body composition and energy metabolism response to energy restriction in obese women. Br. J. Nutr. 106:486-490. https://doi.org/10.1017/S0007114511000432
  24. Song, W., H. Yu, Y. Lin, K. Sun, Y. Zhang, Y. Song, R. Hui, and J. Chen. 2015. A functional variant in the exon 5 of PLIN1 reduces risk of central obesity by possible regulation of lipid storage. Biochem. Biophys. Res. Commun. 456:896-900. https://doi.org/10.1016/j.bbrc.2014.12.053
  25. Stephens, M., N. J. Smith, and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68:978-989. https://doi.org/10.1086/319501
  26. Sun, H. J. and G. L. Wang, 2006. Study progress on the evaluation system of quality chicken meat. China Poult. 28:38-42.
  27. Vaiman, D., D. Mercier, K. Moazami-Goudarzi, A. Eggen, R. Ciampolini, A. Lepingle, R. Velmala, J. Kaukinen, S.-L. Varvio, P. Martin, H. Leveziel, and G. Guerin. 1994. A set of 99 cattle microsatellites: Characterization, synteny mapping, and polymorphism. Mamm. Genome 5:288-297. https://doi.org/10.1007/BF00389543
  28. Wang, Y., D. Shu, L. Li, H. Qu, C. Yang, and Q. Zhu. 2007. Identification of single nucleotide polymorphism of h-fabp gene and its association with fatness traits in chickens. Asian Australas. J. Anim. Sci. 20:1812-1819. https://doi.org/10.5713/ajas.2007.1812
  29. Wang, Y., L. H. Xiao, X. L. Zhao, Y. P. Liu, and Q. Zhu. 2014. Identification of snps in cellular retinol binding protein 1 and cellular retinol binding protein 3 genes and their associations with laying performance traits in erlang mountainous chicken. Asian Australas. J. Anim. Sci. 27:1075-1081. https://doi.org/10.5713/ajas.2013.13587
  30. Wang, Y., Q. Zhu, L. Yang, and Y. P. Liu. 2012. Ontogenic expression pattern and genetic polymorphisms of the fatty acid transport protein 4 (FATP4) gene in Chinese chicken populations. Int. J. Mol. Sci 13:6820-6835. https://doi.org/10.3390/ijms13066820
  31. Zhang, H. L., H. J. Fan, X. L. Liu, Y. Wu, and S. S. Hou. 2013. Molecular cloning of the perilipin gene and its association with carcass and fat traits in chinese ducks. Genet. Mol. Res. 12:1582-1592. https://doi.org/10.4238/2013.May.13.12
  32. Zhao, X. L., Y. P. Liu, X. S. Jiang, H. R. Du, and Q. Zhu. 2009. Association of polymorphisms of chicken adipose differentiation-related protein gene with carcass traits. J. Poult. Sci. 46:87-94. https://doi.org/10.2141/jpsa.46.87
  33. Zhao, X. L., Y. P. Liu, Y. Luo, Y. Zhou, and Q. Zhu. 2009. Study on the relationship between developmental variants of plin gene expression and fatness traits in chickens. Chinese J. Anim. Vet. Sci. 40:149-154.
  34. Zhao, X. L., P. B. Siegel, Y. P. Liu, Y. Wang, E. R. Gilbert, Q. Zhu, and L. Zhang. 2012. Housing system affects broiler characteristics of local chinese breed reciprocal crosses. Poult. Sci. 91:2405-2410. https://doi.org/10.3382/ps.2012-02165
  35. Zhou, Y., Q. X. Lei, F. W. Li, J. B. Gao, W. Liu, Y. Lu, and D. G. Chao. 2014. Association on single nucleotide polymorphism of perilipin gene (PLIN) with carcass and fatness traits in luqin chicken (Gallus gallus). J. Agric. Biotechnol. 22:1002-1008.
  36. Zhou, Y., Y. P. Liu, X. S. Jiang, H. R. Du, and Q. Zhu. 2009. Study on association of single nucleotide polymorphism of mef2a gene with carcass traits in chicken. Chinese J. Anim. Vet. Sci. 8: 010.

Cited by

  1. Integrated analysis of lncRNA and mRNA expression in rainbow trout families showing variation in muscle growth and fillet quality traits vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-30655-8
  2. Association between perilipin gene polymorphisms and body weight traits in Jinmao Hua chickens vol.60, pp.3, 2015, https://doi.org/10.5194/aab-60-327-2017
  3. Thermal challenge alters the transcriptional profile of the breast muscle in turkey poults vol.98, pp.1, 2015, https://doi.org/10.3382/ps/pey401
  4. Polymorphism of the PLIN1 gene and its association with body measures and ultrasound carcass traits in Qinchuan beef cattle vol.63, pp.10, 2015, https://doi.org/10.1139/gen-2019-0184
  5. Carcass and fatness traits of Central Javanese local ducks based on Lipoprotein Lipase (LPL) and Perilipin (PLIN) genes vol.1918, pp.5, 2015, https://doi.org/10.1088/1742-6596/1918/5/052003