DOI QR코드

DOI QR Code

Anti-inflammatory and Anti-tumor Effects of Tetragonia tetragonoides Extracts

번행초 추출물의 항염증 및 종양억제 효과

  • Choi, Hye Jung (Department of Biology and Chemistry, Changwon National University) ;
  • Yee, Sung-Tae (College of Pharmacy, Sunchon National University) ;
  • Kwon, Gi-Seok (Department of Bioresource Science, Andong National University) ;
  • Joo, Woo Hong (Department of Biology and Chemistry, Changwon National University)
  • 최혜정 (창원대학교 생물학화학융합학부) ;
  • 이성태 (순천대학교 약학대학) ;
  • 권기석 (안동대학교 생약자원학과) ;
  • 주우홍 (창원대학교 생물학화학융합학부)
  • Received : 2015.09.01
  • Accepted : 2015.12.04
  • Published : 2015.12.28

Abstract

We examined the anti-inflammatory effect and anti-tumor activity of Tetragonia tetragonioides crude extracts and fractions. The anti-inflammatory activity of T. tetragonioides was exuded through the inhibition of lipopolysaccharide (LPS, $1{\mu}g/ml$), induced nitric oxide (NO) and interleukin (IL)-$1{\beta}$ production. The production of IL-6 and tumor necrosis factor $(TNF)-{\alpha}$ also decreased in LPS induced RAW264.7 cells after treatment with polysaccharide (PS) fraction. Furthermore, the hexane (HX) fraction strongly inhibited the granulocytes macrophage-colony stimulating factor (GM-CSF) production. In ICR mice previously inoculated with Sarcoma 180, the life prolongation effects were 16.67% with an intraperitoneal injection of methanol (MeOH) extract and polysaccharide fraction at a dose of 100 mg/kg/day. The results are an important preliminary step toward the development of effective anti-inflammatory and anti-tumor agents using T. tetragonioides.

본 연구에서는 번행초의 추출물과 분획물의 항염증 효과 및 항암 활성에 대해 연구하였다. 번행초의 항염증 활성은 $1{\mu}g/ml$ LPS로 유도되는 NO 및 IL-$1{\beta}$의 생성이 억제됨을 통해 확인되었다. IL-6 및 $TNF-{\alpha}$$1{\mu}g/ml$ LPS로 자극된 RAW264.7 세포에서 다당류 추출물을 처리한 후 생성이 감소되었다. 나아가 HX 분획물은 GM-CSF의 생성을 강력하게 억제하는 것으로 확인되었다. 또한 Sarcoma 180을 미리 주사한 ICR 마우스에 MeOH과 다당 추출물을 100 mg/kg/day 복강내 투여시 16.67%의 수명 연장 효과가 관찰되었다. 이상의 결과는 번행초를 이용하여 효과적인 항염증 및 항암제 개발을 위한 사전조사로써 중요한 결과를 제공한다.

Keywords

References

  1. Brennan FM, Chantry D, Jackson A, Maini R, Feldmann M. 1989. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. The Lancet 2: 244-247.
  2. Choi HJ, Kang JS, Choi YW, Jeong YK, Joo WH. 2008. Inhibitory activity on the diabetes related enzymes of Tetragonia tetragonioides. Korean J. Biotechnol. Bioeng. 23: 419-424.
  3. Choi HJ, Park MR, Kang JS, Choi YW, Jeong YK, Joo WH. 2008. Antimicrobial activity of four solvent fracrtions of Tetragonia tetragonioides. Cancer Prev. Res. 13: 205-211.
  4. Choi YW, Kim HJ, Park SS, Chung JH, Lee HW, Oh SO, et al. 2009. Inhibition of endothelial cell adhesion by the new anti-inflammatory agent ${\alpha}$-iso-cubebene. Vascul. Pharmacol. 51: 215-224. https://doi.org/10.1016/j.vph.2009.05.008
  5. Gabay C. 2006. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 8: 53. https://doi.org/10.1186/ar1914
  6. Han MH, Lee MH, Hong SH, Choi YH, Moon JS, Song MK, et al. 2014. Comparison of anti-inflammatory activities among ethanol extracts of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus, and their mixtures in RAW 246.7 murine macrophages. J. Life Sci. 24: 329-335. https://doi.org/10.5352/JLS.2014.24.3.329
  7. Hofman M, Morrow GR, Roscoe JA, Hickok JT, Mustian KM, Moore DF, et al. 2004. Cancer patients' expectations of experiencing treatment related side effects: a University of Rochester cancer center-community clinical oncology program study of 938 patients from community practices. Cancer 101: 851-857. https://doi.org/10.1002/cncr.20423
  8. Kato M, Takeda T, Ogihara Y, Shimu M, Nomura T, Tomita Y. 1985. Studies on the structure of polysaccharide from Tetragonia tetragonioides. I. Chem. Pharm. Bull. 33: 3675-3680. https://doi.org/10.1248/cpb.33.3675
  9. Lee ES, Ju HK, Moon TC, Lee E, Jahng Y, Lee SH, et al. 2004. Inhibition of nitric oxide and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) production by propenone compound through blockade of nuclear factor (NF)-${\kappa}B$ activation on cultured murine macrophages. Biol. Pharm. Bull. 27: 617-620. https://doi.org/10.1248/bpb.27.617
  10. Lee MA, Choi HJ, Kang JS, Choi YW, Joo WH. 2008. Antioxidant activities of the solvent extracts from Tetragonia tetragonioides. J. Life Sci. 18: 220-227. https://doi.org/10.5352/JLS.2008.18.2.220
  11. Lee KY, Han MJ, Park SY, Kim DH. 2000. In vitro and in vivo antitumor activity of the fruit body of Phellinus linteus. Korean J. Food Sci. Technol. 32: 477-480.
  12. Masters SL, Simon A, Aksentijevich I, Kastner DL. 2009. Horror autoinflammaticus: the molecular pathophysiology of auto-inflammatory disease. Ann. Rev. Immunol. 27: 621-668. https://doi.org/10.1146/annurev.immunol.25.022106.141627
  13. Mori K, Kinsho T. 1988. Synthesis of sphingosine relatives, VII. Synthesis of anti-ulcergenic cerebroside isolated Tetragonia tetragonioides. Liebigs Ann. Chem. 8: 807-814.
  14. Nathan C, Xie QW. 1994. Nitric oxide synthases: Roles, tolls and controls. Cell 78: 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  15. Okuyama E, Yamazaki M. 1983. The principles of Tetragonia tetragonioides having antiulcerogenic activity. II. Isolation and structure of cerebrosides. Chem. Pharm. Bull. 31: 2209-2219. https://doi.org/10.1248/cpb.31.2209
  16. Park HJ, Kim SM, Kwon HJ, Lee HT, Kim BW, Kim TH, et al. 2014. Anti-inflammatory effect of Scutellaria baicalensis hot water extracts containing baicalin on modulation of the immune system in Raw264.7 cells. J. Life Sci. 24: 219-226. https://doi.org/10.5352/JLS.2014.24.3.219

Cited by

  1. Machaerium cuspidatum 메탄올 추출물의 항산화 및 항암활성에 관한 연구 vol.44, pp.4, 2015, https://doi.org/10.4014/mbl.1608.08003
  2. 스트렙토조토신으로 유도한 당뇨 마우스에서 번행초 다당 추출물의 항당뇨 효과 vol.27, pp.5, 2015, https://doi.org/10.5352/jls.2017.27.5.579
  3. Utilization of Complex Pectic Polysaccharides from New Zealand Plants (Tetragonia tetragonioides and Corynocarpus laevigatus) by Gut Bacteroides Species vol.67, pp.27, 2015, https://doi.org/10.1021/acs.jafc.9b02429
  4. Tetragonia tetragonioides Relieves Depressive-Like Behavior through the Restoration of Glial Loss in the Prefrontal Cortex vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8888841