DOI QR코드

DOI QR Code

Proximate Compositions and Biological Activities of Lactuca indica L. Seonhyang and Wild Species Depending on Harvesting Time

왕고들빼기 선향과 야생종의 수확시기별 일반성분 및 생리활성

  • Kwon, Hye-Jeong (Agro-food Research Institute, Gangwon Provincial Agricultural Research & Extention Services) ;
  • Jeong, Eun-Kyoung (Agro-food Research Institute, Gangwon Provincial Agricultural Research & Extention Services) ;
  • Jeong, Hye-Jeong (Agro-food Research Institute, Gangwon Provincial Agricultural Research & Extention Services) ;
  • Kim, Si-Chang (Agro-food Research Institute, Gangwon Provincial Agricultural Research & Extention Services) ;
  • Heo, Nam-Kee (Agro-food Research Institute, Gangwon Provincial Agricultural Research & Extention Services) ;
  • No, Hee-Sun (Specialty Crops Research Institute, Gangwon Provincial Agricultural Research & Extention Services)
  • 권혜정 (강원도농업기술원 농식품연구소) ;
  • 정은경 (강원도농업기술원 농식품연구소) ;
  • 정혜정 (강원도농업기술원 농식품연구소) ;
  • 김시창 (강원도농업기술원 농식품연구소) ;
  • 허남기 (강원도농업기술원 농식품연구소) ;
  • 노희선 (강원도농업기술원 특화작물연구소)
  • Received : 2014.11.14
  • Accepted : 2015.02.13
  • Published : 2015.03.31

Abstract

We investigated the effect of harvesting time on the proximate compositions and biological activities of Lactuca indica L. Seonhyang and wild species. The highest moisture content (91%) was obtained from Seonhyang harvested in June. The wild species harvested in August showed the highest crude protein (4.8%) and crude fiber contents (2.7%). Potassium contents were 626~684 mg/100 g, and no significant difference in harvesting time was observed between Seonhyang and wild species. Calcium and phosphate contents of Seonhyang leaves harvested in August were highest (350 mg/100 g and 123 mg/100 g, respectively). The highest total polyphenol and total flavonoid contents were observed for wild species harvested in June (60 mg/g and 126 mg/g, respectively). Ethanol extracts of Seonhyang and wild species leaves harvested in June showed the highest DPPH radical scavenging activity (95%). ${\alpha}$-Amylase inhibitory activity was highest (94.8%) in water extract of Seonhyang leaves harvested in July. Nitric oxide production inhibitory activity was $14.3{\mu}M$ in ethanol extracts of Seonhyang and $16.8{\mu}M$ in ethanol extracts of wild species harvested in June. Calcium content and ${\alpha}$-amylase inhibitory activity of Seonhyang leaves were greater than those of wild species leaves. These results suggest that Seonhyang leaf can be used to develop processed foods.

왕고들빼기 신품종 선향과 야생종의 수확시기별 일반성분, 무기질, 항산화, 항당뇨, 항염 효과를 측정하였다. 수분 함량은 6월 수확된 선향 잎이 90.5%로 가장 높았으며, 8월 수확된 야생종에서 단백질은 4.8%, 조섬유는 2.7%로 가장 높았다. 칼륨은 선향과 야생종 잎에서 626~684 mg/100 g으로 수확시기별 큰 차이가 없었다. 칼슘은 8월 수확 선향 잎에서 350 mg/100 g으로 가장 높았다. 인은 8월 수확 야생종에서 123 mg/100 g으로 가장 높았다. 6월 수확된 야생종 잎에서 총 폴리페놀은 59.8 mg/g, 총 플라보노이드는 125.8 mg/g으로 가장 높았다. DPPH radical 소거 활성은 6월 수확된 선향과 야생종 잎의 에탄올 추출물에서 약 94%로 가장 높았다. ${\alpha}$-Amylase 저해 활성은 7월에 수확된 선향 잎의 물 추출물에서 94.8%로 가장 높았다. NO 생성 저해 활성은 6월 수확된 선향과 야생종 잎의 에탄올 추출물에서 각각 14.3, $16.8{\mu}M$로 LPS 단독처리에 비해 NO 생성 저해 효과를 보였다. 따라서 선향 잎은 야생종에 비해 칼슘 함량과 ${\alpha}$-amylase 저해 활성이 높았으며, 이러한 선향 잎의 영양 기능성을 활용한 다양한 가공품 개발이 가능할 것으로 보인다.

Keywords

References

  1. Korea Forest Service. 2014. Statistical yearbook of forestry. Daejeon, Korea. Vol 44, p 248-249.
  2. Kim HY, Lim SH, Park YH, Ham HJ, Lee KJ, Park DS, Kim KH, Kim SM. 2011. Screening of ${\alpha}$-amylase, ${\alpha}$-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. J Korean Soc Food Sci Nutr 40: 308-315. https://doi.org/10.3746/jkfn.2011.40.2.308
  3. An SY. 2009. Research of breeding on wild vegetables. Gangwondo ARES experiment research report. Chuncheon, Korea. p 501-515.
  4. Kim SH, Kim JH, Lee HD, Choi WI. 1998. The study of investigation and utility on wild resource plant. Chungcheongbuk- do ARES experiment research report. Cheongju, Korea. p 147-151.
  5. Kim JM, Kim JN, Lee KS, Shin SR, Yoon KY. 2012. Comparison of physicochemical properties of wild and cultivated Lactuca indica. J Korean Soc Food Sci Nutr 41: 526-532. https://doi.org/10.3746/jkfn.2012.41.4.526
  6. Kim JN, Kim JM, Lee KS. 2012. Antioxidant activity of methanol extracts from Lactuca indica. Korean J Food Preserv 19: 294-300. https://doi.org/10.11002/kjfp.2012.19.2.294
  7. Kim MJ, Lee E, Cha BC, Choi MY, Rhim TJ, Park HJ. 1997. Serum cholesterol lowering effect of triterpene acetate obtained from Lactuca indica. Korean J Pharmacogn 26: 40-46.
  8. Park HJ, Lee MS, Lee E, Choi MY, Cha BC, Jung WT. 1995. Serum cholesterol lowering effects and triterpenoids of the herbs of Lactuca indica. Korean J Pharmacogn 26: 40-46.
  9. Kwon MC, Han JG, Qadir SA, An JH, Lee DH, Lee HY. 2008. Enhancement of immune-potentiation of Cichorium endivia L. by ultrasonification extraction process. Korean J Medicinal Crop Sci 16: 1-7.
  10. AOAC. 2000. Official method of analysis of AOAC. 17th ed. International Association of Official Analytical Communities, Gaithersburg, MD, USA. p 1-26.
  11. Park MH, Choi BG, Lim SH, Kim KH, Heo NK, Yu SH, Kim JD, Lee KJ. 2011. Analysis of general components, mineral contents, and dietary fiber contents of Synurus deltoides. J Korean Soc Food Sci Nutr 40: 1631-1634. https://doi.org/10.3746/jkfn.2011.40.11.1631
  12. Singleton VL, Orthofer R, Amuela-Raventos RM. 1999. Analysis of total phenol and other oxidation substrates and antioxidants by means Folin-Ciocalteu reagent. Method Enzymol 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  13. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  14. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  15. Lim CS, Li CY, Kim YM, Lee WY, Rhee HI. 2005. The inhibitory effect of Cornus walteri extract against ${\alpha}$-amylase. J Korean Soc Appl Biol Chem 48: 103-108.
  16. Park YH, Lim SH, Kim HY, Park MH, Lee KJ, Kim KH, Kim YG, Ahn YS. 2011. Biological activities of extracts from flowers of Angelica gigas Nakai. J Korean Soc Food Sci Nutr 40: 1079-1085. https://doi.org/10.3746/jkfn.2011.40.8.1079
  17. Joo SY. 2013. Antioxidant activities of medicinal plant extracts. J Korean Soc Food Sci Nutr 42: 512-519. https://doi.org/10.3746/jkfn.2013.42.4.512
  18. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung Island. Korean J Food Sci Technol 37: 233-240.
  19. Lee KJ, Yun IJ, Kim HY, Kim KH, Kim YJ, Kim DW, Lim SH. 2010. Antioxidative activity of solvent extracts from Synurus excelsus and Synurus palmatopinnatifidus. J Korean Soc Food Sci Nutr 39: 1893-1897. https://doi.org/10.3746/jkfn.2010.39.12.1893
  20. Kim EJ, Choi JY, Yu M, Kim MY, Lee SH, Lee BH. 2012. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J Food Sci Technol 44: 337-342. https://doi.org/10.9721/KJFST.2012.44.3.337
  21. Choi KH, Nam HH, Choo BK. 2013. Effect of five Korean native Taraxacum on antioxidant activity and nitric oxide production inhibitory activity. Korean J Medicinal Crop Sci 21: 191-196. https://doi.org/10.7783/KJMCS.2013.21.3.191
  22. Choi N, Lee J, Shin HS. 2008. Antioxidant activity and nitrite scavenging ability of olive leaf (Olea europaea L.) fractions. Korean J Food Sci Technol 40: 257-264.

Cited by

  1. Isolation and identification of antimicrobial substances from Korean Lettuce (Youngia sonchifolia M.) vol.27, pp.3, 2018, https://doi.org/10.1007/s10068-018-0315-3
  2. Enhancement of Phenolic Compounds and Antioxidative Activities by the Combination of Culture Medium and Methyl Jasmonate Elicitation in Hairy Root Cultures of Lactuca indica L. vol.14, pp.7, 2015, https://doi.org/10.1177/1934578x19861867