DOI QR코드

DOI QR Code

Quality Characteristics and Antioxidant Activity of Prickly Pear Cactus Cladodes

손바닥 선인장 엽상경의 품질 특성과 항산화 효과

  • Hwang, Joon-Ho (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Yi, Mi-Ran (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Kim, Jae-Won (Department of Food Bioengineering, Jeju National University) ;
  • Bu, Hee-Jung (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Kang, Chang-Hee (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Lim, Sang-Bin (Department of Food Bioengineering, Jeju National University)
  • 황준호 (제주대학교 생명과학기술혁신센터) ;
  • 이미란 (제주대학교 생명과학기술혁신센터) ;
  • 김재원 (제주대학교 식품생명공학과) ;
  • 부희정 (제주대학교 생명과학기술혁신센터) ;
  • 강창희 (제주대학교 생명과학기술혁신센터) ;
  • 임상빈 (제주대학교 식품생명공학과)
  • Received : 2014.11.10
  • Accepted : 2015.01.20
  • Published : 2015.03.31

Abstract

Prickly pear cactus cladodes were extracted with hot water and 70% ethanol, followed by fractionation with n-hexane (HF), ethyl acetate (EF), n-butanol (BF), and distilled water. Total phenolics and total flavonoid contents as well as antioxidative and anti-inflammatory activities were then measured. Total phenolic contents were 784, 452, and 220 mg gallic acid equivalents (GAE)/g, whereas total flavonoid contents were 214, 76, and 113 mg quercetin equivalents (QE)/g in EF, BF, and HF, respectively. DPPH and ABTS radical scavenging activities ($IC_{50}$) were 103 and $105{\mu}g/mL$ in EF, 359 and $379{\mu}g/mL$ in BF, and 469 and $605{\mu}g/mL$ in HF, respectively. Oxygen radical absorbance capacity was highest at $391{\mu}M$ TE in EF (in decreasing order of $117{\mu}M$ TE in BF and $64{\mu}M$ TE in HF), whereas superoxide anion radical scavenging activity ($IC_{50}$) was highest at $40{\mu}g/mL$ in EF (in decreasing order of $69{\mu}g/mL$ in BF and $98{\mu}g/mL$ in 70% ethanol extract). Inhibitory activity ($IC_{50}$) of nitric oxide (NO) production induced by LPS-activated RAW264.7 cells was highest at $62{\mu}g/mL$ in HF (in decreasing order of $104{\mu}g/mL$ in EF and $465{\mu}g/mL$ in BF). The selectivity index (ratio of inhibitory activity of NO production to cell cytotoxicity) was highest at 4.63 in EF (in decreasing order of 3.37 in HF and 2.14 in BF). In conclusion, EF showed potent antioxidant and anti-inflammatory effects with high phenolic and flavonoid contents.

제주산 손바닥 선인장의 엽상경을 열수와 70% 에탄올로 추출한 후 분획하여 총 페놀 및 총 플라보노이드 함량과 항산화 활성 및 항염증 활성을 측정하였다. 총 페놀 함량은 에틸 아세테이트 분획물이 784 mg GAE/g으로 가장 높았고 그 다음으로 부탄올 분획물(452), 헥산 분획물(220) 순이었다. 총 플라보노이드 함량도 에틸아세테이트 분획물이 214 mg GE/g으로 가장 높았고 헥산 분획물(113), 부탄올 분획물(76) 순이었다. 에틸아세테이트 분획물, 부탄올 분획물, 헥산 분획물의 DPPH 라디칼 소거능($IC_{50}$)은 각각 103, 359, $469{\mu}g/mL$였고, ABTS 라디칼 소거능($IC_{50}$)도 각각 105, 379, $605{\mu}g/mL$로 에틸아세테이트 분획물이 가장 높았다. 유해산소 억제 능력(ORAC)은 에틸아세테이트 분획물이 $391{\mu}M$ TE로 가장 높은 활성을 보였고 부탄올 분획물(117), 헥산 분획물(64) 순이었지만, superoxide anion 소거 활성($IC_{50}$, ${\mu}g/mL$)은 에틸아세테이트 분획물(40), 부탄올 분획물(69), 70% 에탄올(98) 순이었다. RAW264.7 세포에 의한 NO 생성 저해능($IC_{50}$, ${\mu}g/mL$)은 헥산 분획물(62), 에틸아세테이트 분획물(104), 부탄올 분획물(465) 순으로 높은 활성을 보였다. 세포독성 대비 NO 생성 저해 활성을 나타내는 SI 지수는 에틸아세테이트 분획물이 4.63으로 가장 높았고, 다음으로는 헥산 분획물(3.37), 부탄올 분획물(2.14), 증류수 추출물(1.66) 순으로, 양성 대조군으로 사용한 quercetin(6.25)보다는 낮았다. 결론적으로 제주산 손바닥 선인장 엽상경의 추출물과 분획물 중에서 에틸아세테이트 분획물이 항산화 활성과 항염 활성이 가장 높았으며, 이는 총 페놀과 총 플라보노이드 함량에 기인하는 것으로 추정되었다.

Keywords

References

  1. Park SS, Kim JJ, Yoon JA, Lee JH, Jung BO, Chung SJ. 2011. Preparation and quality characteristics of Takju (rice wine) with Opuntia ficus-indica var. saboten and chitooligosaccharide. J Chitin Chitosan 16: 164-169.
  2. Sreekanth D, Arunasree MK, Roy KR, Chandramohan Reddy T, Reddy GV, Reddanna P. 2007. Betanin a betacyanin pigment purified from fruits of Opuntia ficus-indica induces apoptosis in human chronic myeloid leukemia cell line-K562. Phytomedicine 14: 739-746. https://doi.org/10.1016/j.phymed.2007.03.017
  3. Galati EM, Monforte MT, Tripodo MM, d'Aquino A, Mondello MR. 2001. Antiulcer activity of Opuntia ficus indica (L.) Mill. (Cactaceae): ultrastructural study. J Ethnopharmacol 76: 1-9. https://doi.org/10.1016/S0378-8741(01)00196-9
  4. Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci 2: 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  5. Madamanchi NR, Hakim ZS, Runge MS. 2005. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J Thromb Haemost 3: 254-267. https://doi.org/10.1111/j.1538-7836.2004.01085.x
  6. Allen RG, Tresini M. 2000. Oxidative stress and gene regulation. Free Radic Biol Med 28: 463-499. https://doi.org/10.1016/S0891-5849(99)00242-7
  7. Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051-3064.
  8. McDaniel ML, Kwon G, Hill JR, Marshall CA, Corbett JA. 1996. Cytokines and nitric oxide in islet inflammation and diabetes. Proc Soc Exp Biol Med 211: 24-32. https://doi.org/10.3181/00379727-211-43950D
  9. Radi R, Beckman JS, Bush KM, Freeman BA. 1991. Peroxynitrite oxidation of sulfhydryls: The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266: 4244-4250.
  10. Seo KI, Yang KH, Shim KH. 1999. Antimicrobial and antioxidative activities of Opuntia ficus-indica var. saboten extracts. Korean J Food Preserv 6: 345-349.
  11. Lee YS, Shon HS, Rho JO. 2011. The antibacterial effects of Backryeoncho (Opuntia ficus-indica var. saboten) extracts as applied to kimchi fermentation with lactic acid bacteria and food poisoning bacteria. Korean J Hum Ecol 20: 1-10. https://doi.org/10.5934/KJHE.2011.20.1.001
  12. Yoon MS, Yoo JS, Lee KK, Kim MK. 2012. A study on biological activities of Opuntia humifusa cladode extracts. J Appl Biol Chem 55: 117-121. https://doi.org/10.3839/jabc.2011.068
  13. Fernandez ML, Trejo A, McNamara DJ. 1990. Pectin isolated from prickly pear (Opuntia sp.) modifies low density lipoprotein metabolism in cholesterol-fed guinea pigs. J Nutr 120: 1283-1290.
  14. Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, Lee YH, Jin C, Lee YS, Cho J. 2003. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficusindica var. saboten. Brain Res 965: 130-136. https://doi.org/10.1016/S0006-8993(02)04150-1
  15. Avila-Nava A, Calderon-Oliver M, Medina-Campos ON, Zou T, Gu L, Torres N, Tovar AR, Pedraza-Chaverri J. 2014. Extract of cactus (Opuntia ficus indica) cladodes scavenges reactive oxygen species in vitro and enhances plasma antioxidant capacity in humans. J Funct Foods 10: 13-24. https://doi.org/10.1016/j.jff.2014.05.009
  16. Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA. 2002. Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J Agric Food Chem 50: 6895-6901. https://doi.org/10.1021/jf025696p
  17. KFDA. 2010. Food Code. Korea Food and Drug Association, Seoul, Korea.
  18. Oh HJ, Jeon SB, Kang HY, Yang YJ, Kim SC, Lim SB. 2011. Chemical composition and antioxidative activity of kiwifruit in different cultivars and maturity. Korean J Food & Nutr 40: 343-349. https://doi.org/10.3746/jkfn.2011.40.3.343
  19. Zhang Q, Zhang J, Shen J, Silva A, Dennis D, Barrow C. 2006. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol 18: 445-450. https://doi.org/10.1007/s10811-006-9048-4
  20. Chang CC, Yang MH, Wen HM, Chern JC. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10: 178-182.
  21. Blois S. 1955. A note on free radical formation in biologically occurring quinones. Biochim Biophys Acta 18: 165. https://doi.org/10.1016/0006-3002(55)90038-X
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50: 4437-4444. https://doi.org/10.1021/jf0201529
  24. Ou B, Hampsch-Woodill M, Prior RL. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49: 4619-4626. https://doi.org/10.1021/jf010586o
  25. Liu F, Ooi VE, Chang ST. 1997. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 60: 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  26. Feugang JM, Konarski P, Zou D, Stintzing FC, Zou C. 2006. Nutritional and medicinal use of cactus pear (Opuntia spp.) cladodes and fruits. Front Biosci 11: 2574-2589. https://doi.org/10.2741/1992
  27. Shin EH, Park SJ, Choi SK. 2011. Component analysis and antioxidant activity of Opuntia ficus-indica var. saboten. J East Asian Soc Dietary Life 21: 691-697.
  28. Wang M, Li J, Rangarajan M, Shao Y, LaVoie EJ, Huang TC, Ho CT. 1998. Antioxidative phenolic compounds from sage (Salvia officinalis). J Agric Food Chem 46: 4869-4873. https://doi.org/10.1021/jf980614b
  29. Cai Y, Luo Q, Sun M, Corke H. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74: 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
  30. Lee EH, Kim HJ, Song YS, Jin C, Lee KT, Cho J, Lee YS. 2003. Constituents of the stems and fruits of Opuntia ficusindica var. saboten. Arch Pharm Res 26: 1018-1023. https://doi.org/10.1007/BF02994752
  31. Safayhi H, Sabieraj J, Sailer ER, Ammon HP. 1994. Chamazulene: an antioxidant-type inhibitor of leukotriene B4 formation. Planta Med 60: 410-413. https://doi.org/10.1055/s-2006-959520

Cited by

  1. Phytochemical Contents and Antioxidant Activities of Opuntia ficus-indica var. saboten vol.29, pp.5, 2016, https://doi.org/10.9799/ksfan.2016.29.5.767
  2. Chemical Composition and Physiological Activity of Opuntia ficus-indica depending on Different Cultivation Regions vol.29, pp.4, 2016, https://doi.org/10.9799/ksfan.2016.29.4.521
  3. Immunostimulatory Activity of Opuntia ficus-indica var. Saboten Cladodes Fermented by Lactobacillus plantarum and Bacillus subtilis in RAW 264.7 Macrophages vol.20, pp.2, 2017, https://doi.org/10.1089/jmf.2016.3831
  4. 채취시기별 보검선인장 줄기의 항산화, 항당뇨 및 항알츠하이머 활성평가 vol.30, pp.6, 2015, https://doi.org/10.9799/ksfan.2017.30.6.1332