DOI QR코드

DOI QR Code

Lipid Extraction from Nannochloropsis sp. Microalgae for Biodiesel Production Using Supercritical Carbon Dioxide

초임계 이산화탄소를 이용한 Nannochloropsis sp. 미세조류로부터 바이오디젤 생산용 지질의 추출

  • 최경석 ((주)한울엔지니어링 기술연구소) ;
  • 류재훈 (한양대학교 화학공학과) ;
  • 박동준 ((주)한울엔지니어링 기술연구소) ;
  • 오세천 (공주대학교 환경공학과) ;
  • 곽현 ((주)한울엔지니어링 기술연구소)
  • Received : 2014.06.24
  • Accepted : 2014.08.17
  • Published : 2015.04.01

Abstract

In this paper, microalgae lipid extractions were performed using conventional organic solvent and supercritical carbon dioxide (SC-$CO_2$) for biodiesel-convertible lipid fractions. The highest levels (58.31%) of fatty acid methyl ester (FAME) content in the lipid extracted by SC-$CO_2$ was obtained, and 18.0 wt.% crude lipid yield was achieved for Bligh-Dyer method. In the SC-$CO_2$ extraction, methanol as a co-solvent was applied to increase the polarity of extract. The experimental results indicated that crude lipid yield, FAME content and yield extracted by combination of SC-$CO_2$ with methanol were 12.5 wt.%, 56.32% and 7.04 wt.%, respectively, and this method could reduce the extraction time from 2 hour to 30 min when compared to SC-$CO_2$ extraction. Therefore, SC-$CO_2$ extraction is proven to be an environmentally-friendly and an effective method for lipid extraction from microalgae.

본 연구에서는 미세조류인 Nannochloropsis sp.로부터 바이오디젤 생산용 지질을 얻기 위하여 유기용매 및 초임계 이산화탄소(SC-$CO_2$)를 이용하여 추출을 수행하였다. SC-$CO_2$ 추출법으로 얻은 지질의 지방산메틸에스테르 함량은 58.31%로 높았으며, Bligh-Dyer 추출법은 18.0 wt.%의 가장 높은 조지방 수율을 나타내었다. SC-$CO_2$ 추출법에 극성을 높이기 위해 공용매로서 methanol을 사용한 결과, 조지방 수율 12.5 wt.%, 지방산메틸에스테르 함량 56.32%, 지방산메틸에스테르 수율 7.04 wt.%였으며, SC-$CO_2$ 만을 이용하는 추출 방법에 비하여 추출 시간을 2시간에서 30분으로 단축시킬 수 있었다. 따라서 미세조류에서 지질을 추출하는데 기존의 유기용매 추출법과 비교하여 SC-$CO_2$ 추출법이 친환경적이며, 효율적인 방법임을 확인하였다.

Keywords

References

  1. Demirbas, A., "Progress and Recent Trends in Biodiesel Fuels," Energy Conv. Manag., 50, 14-34(2009). https://doi.org/10.1016/j.enconman.2008.09.001
  2. Gavrilescu, M. and Chisti, Y., "Biotechnology - a Sustainable Alternative for Chemical Industry," Biotechnology Advances, 23, 471-499(2005). https://doi.org/10.1016/j.biotechadv.2005.03.004
  3. Pulz, O. and Gross, W., "Valuable Products from Biotechnology of Microalgae," Appl. Microbiol. Biotechnol., 65, 635-648(2004). https://doi.org/10.1007/s00253-004-1647-x
  4. Chisti, Y., "Biodiesel from Microalgae," Biotechnology Advances, 25, 294-306(2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  5. Rosenberg, J. N., Oyler, G. A., Wilkinson, L. and Betenbaugh, M. J., "A Green Light for Engineered Algae: Redirecting Metabolism to Fuel a Biotechnology Revolution," Curr. Opin. Biotechnol., 19, 430-436(2008). https://doi.org/10.1016/j.copbio.2008.07.008
  6. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H.., Posten, C., Kruse, O. and Hankamer, B., "Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production," Bioenergy Research, 1, 20-43(2008). https://doi.org/10.1007/s12155-008-9008-8
  7. Lardon, L., Helias, A., Sialve, B., Steyer, P. and Bernard, O., "Life-Cycle Assessment of Biodiesel Production from Microalgae," Environ. Sci. Technol., 43(17), 6475-6481(2009). https://doi.org/10.1021/es900705j
  8. Lee, H. S., Jeon, S. G., Oh, Y. K., Kim, K. H., Chung, S. H., Na, J. G. and Yeo, S. D., "Recovery of Lipids from Chlorella sp. KR- 1 via Pyrolysis and Characteristics of the Pyrolysis Oil," Korean Chem. Eng. Res., 50(4), 672-677(2012). https://doi.org/10.9713/kcer.2012.50.4.672
  9. Mata, T. M., Martins A. A. and Caetano, N. S., "Microalgae for Biodiesel Production and Other Applications: A Review," Renew. Sust. Energ. Rev., 14, 217-232(2010). https://doi.org/10.1016/j.rser.2009.07.020
  10. Kim, J. K., Um, B. H. and Kim, T. H., "Bioethanol Production from Micro-algae, Schizocytrium sp., Using Hydrothermal Treatment and Biological Conversion," Korean J. Chem. Eng., 29(2), 209- 214(2012). https://doi.org/10.1007/s11814-011-0169-3
  11. Mercer, P. and Amenta, R. E., "Developments in Oil Extraction from Microalgae," European Journal of Lipid Science and Technology, 113, 539-547(2011). https://doi.org/10.1002/ejlt.201000455
  12. Araujo, G. S., Matos, L. J. B. L., Fernandes, J. O., Cartaxo, S., J. M., Goncalves, L. R. B., Fermamdes, F. A. N. and Farias, W. R. L., "Extraction of Lipids from Microalgae by Ultrasound Application: Prospection of the Optimal Extraction Method," Ultrason. Sonochem., 20, 95-98(2013). https://doi.org/10.1016/j.ultsonch.2012.07.027
  13. Shin, H. Y., Ryu, J. H., Bae, S. Y., Crofcheck, C. and Crocker, M., "Lipid Extraction from Scenedesmus sp. Microalgae for Biodiesel Production Using Hot Compressed Hexane," Fuel, 130, 66-69(2014). https://doi.org/10.1016/j.fuel.2014.04.023
  14. Taher, H., Al-Zuhair, S., Al-Marzouqi, A. H., Haik, Y., Farid, M. and Tariq, S., "Supercritical Carbon Dioxide Extraction of Microalgae Lipid: Process Optimization and Laboratory Scale-Up," J. Supercrit. Fluids, 86, 57-66(2014). https://doi.org/10.1016/j.supflu.2013.11.020
  15. Tang, S., Qin, C., Wang, H., Li, S. and Tian, S., "Study on Supercritical Extraction of Lipids and Enrichment of DHA from Oil-Rich Microalgae," J. Supercrit. Fluids, 57, 44-49(2011). https://doi.org/10.1016/j.supflu.2011.01.010
  16. Mendes, R. L., Nobre, B. P., Cardoso, M. T., Pereira, A. P. and Palavra, A. F., "Supercritical Carbon Dioxide Extraction of Compounds with Pharmaceutical Importance from Microalgae," Inorg. Chim. Acta., 356, 328-334(2003). https://doi.org/10.1016/S0020-1693(03)00363-3
  17. Cheung, P. C. K., "Temperature and Pressure Effects on Supercritical Carbon Dioxide Extraction of n-3 Fatty Acids from Red Seaweed," Food Chem., 65, 399-403(1999). https://doi.org/10.1016/S0308-8146(98)00210-6
  18. Andrich, G., Nesti, U., Venturi, F., Zinnai, A. and Fiorentini, R., "Supercritical Fluid Extraction of Bioactive Lipids from the Micrialga Nannochloropsis sp.," European Journal of Lipid Science and Technology, 107, 381-386(2005). https://doi.org/10.1002/ejlt.200501130
  19. Couto, R. M., Simoes, P. C., Reis, A., Silva, T. L. D., Martins, V. H. and Sanchex-Vicente, Y., "Supercritical Fluid Extraction of Lipids from the Heterotrophic Microalga Crypthecodinium Cohnii," Engineering in Life Sciences, 10(2), 158-164(2010). https://doi.org/10.1002/elsc.200900074
  20. Choi, K. J., Nakhost, Z., Krukonis, V. J. and Karel M., "Supercritical Fluid Extraction and Characterization of Lipids from Algae Scenedesmus Obliquus," Food Biotechnology, 1(2), 268-281(1987).
  21. Sajilata, M. G., Singhal, R. S. and Kamat M. Y., "Supercritical $CO_2$ Extraction of c-linolenic Acid (GLA) from Spirulina Platensis ARM 740 Using Response Surface Methodology," J. Food Eng., 84, 321-326(2008). https://doi.org/10.1016/j.jfoodeng.2007.05.028
  22. Tang, S., Qin, C., Wang, H., Li, S. and Tian, S., "Study on Supercritical Extraction of Lipids and Enrichment of DHA from Oil-rich Microalgae," J. Supercrit. Fluids, 57, 44-49(2011). https://doi.org/10.1016/j.supflu.2011.01.010
  23. Kinney, A. J. and Clemente, T. E., "Modifying Soybean Oil fir Enhanced Performance in Biodiesel Blends," Fuel Process. Technol., 86, 1137-1147(2005). https://doi.org/10.1016/j.fuproc.2004.11.008

Cited by

  1. 유기발광소자를 위한 해양 미세조류 유래 물질 및 광 발광 탐색 vol.29, pp.4, 2015, https://doi.org/10.13047/kjee.2015.29.4.564
  2. 탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화 vol.56, pp.2, 2015, https://doi.org/10.9713/kcer.2018.56.2.229