DOI QR코드

DOI QR Code

Optimization of Fatty Acids Production from Lard via Subcritical Water-Mediated Hydrolysis

아임계수 가수분해를 통한 돈지로부터 지방산 생산의 최적화

  • Ryu, Jae-Hun (Department of Chemical Engineering, Hanyang University) ;
  • Shin, Hee-Yong (Center for Applied Energy Research, University of Kentucky)
  • 류재훈 (한양대학교 화학공학과) ;
  • 신희용 (켄터키대학교 응용에너지연구소)
  • Received : 2014.06.16
  • Accepted : 2014.08.11
  • Published : 2015.04.01

Abstract

Response surface methodology (RSM) in combination with a 17-run central composite design (CCD) was applied to optimize the non-catalytic hydrolysis of lard using subcritical water to produce fatty acids (FA). The effects of three variables including temperature, molar ratio of water to oil and time, and their relationship on FA content were investigated. A quadratic regression model was employed to predict the FA contents. Optimum reaction conditions for maximizing the FA content were obtained as follows: reaction temperature of $288.5^{\circ}C$, molar ratio of water to oil of 39.5 and reaction time of 29.5 min. Under the optimum conditions, the predicted and experimentally obtained FA contents were 97.06% and 96.99%, respectively.

지방산 생산을 위한 돈지의 아임계수 가수분해 공정을 최적화하기 위하여 17-run 중심합성법(central composite design)에 기초한 반응표면법(response surface methodology)이 사용되었다. 반응 온도, 오일 대비 물의 몰 비, 반응 시간과 같은 변수 및 이들의 상관관계가 지방산 함량에 미치는 영향을 조사하였으며, 지방산 함량을 예측하기 위하여 2차 다항 회귀방정식이 제안되었다. 최대 지방산 함량을 얻을 수 있는 반응 조건은 $288.5^{\circ}C$, 39.5몰 비, 29.5분이었으며, 이 조건에서의 예측 및 실제 지방산 함량은 각각 97.06% 및 96.99%였다.

Keywords

References

  1. Arpe, H.-J., Ullmann's Encyclopedia, Industrial Organic Chemicals: Starting Materials and Intermediates, Vol. 4, First Ed., pp. 2481-2532, Wiley-VCH, Weinheim (1999).
  2. Minami, E. and Saka, S., "Kinetics of Hydrolysis and Methyl Esterification for Biodiesel Production in Two-step Supercritical Methanol Process," Fuel, 85, 2479-2483(2006). https://doi.org/10.1016/j.fuel.2006.04.017
  3. Pinnarat, T. and P. E. Savage, "Noncatalytic Esterification of Oleic Acid in Ethanol," J. Supercrit. Fluid., 53, 53-59(2010). https://doi.org/10.1016/j.supflu.2010.02.008
  4. Srilatha, K., Lingaiah, N., Prabhavathi Devi, B. L. A., Prasad, R. B. N., Venkateswar, S. and Sai Prasad, P. S., "Esterification of Free Fatty Acids for Biodiesel Production over Heteropoly Tungstate Supported on Niobia Catalysts," Appl. Catal. A Gen., 365, 28-33 (2009). https://doi.org/10.1016/j.apcata.2009.05.025
  5. Choi, J.-H., Park, Y.-B., Lee, S.-H., Cheon, J.-K. and Woo, H.-C., "The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on silica Gel," Korean Chem. Eng. Res., 48(5), 583-588(2010).
  6. Hayyan, A., Hashim, M. A., Mirghani, M. E. S., Hayyan, M. and AlNashef, I. M., "Esterification of Sludge Palm Oil Using Trifluoromethanesulfonic Acid for Preparation of Biodiesel Fuel," Korean J. Chem. Eng., 30(6), 1229-1234(2013). https://doi.org/10.1007/s11814-013-0045-4
  7. Hong, S. W., Cho, H. J. and Yeo, Y.-K., "An Analysis of Characteristics for the Non-catalytic Esterification of Palm Fatty Acid Distillate (PFAD)," Korean Chem. Eng. Res., 52(3), 395-401(2014). https://doi.org/10.9713/kcer.2014.52.3.395
  8. Immer, J. G., Kelly, M. J. and Lamb, H. H., "Catalytic Reaction Pathways in Liquid-phase Deoxygenation of C18 Free Fatty Acids," Appl. Catal. A Gen., 375, 134-139(2010). https://doi.org/10.1016/j.apcata.2009.12.028
  9. Monnier, J., H. Sulimma, A. Dalai and G. Caravaggio; "Hydrodeoxygenation of Oleic Acid and Canola Oil over Alumina-supported Metal Nitrides," Appl. Catal. A Gen., 382, 176-180(2010). https://doi.org/10.1016/j.apcata.2010.04.035
  10. Ping, E. W., Pierson, J., Wallace, R., Miller, J. T., Fuller, T. F. and Jones, C. W., "On the Nature of the Deactivation of Supported Palladium Nanoparticle Catalysts in the Decarboxylation of Fatty Acids," Appl. Catal. A Gen., 396, 85-90(2011). https://doi.org/10.1016/j.apcata.2011.01.042
  11. Mills, V. and Mcclain, H. K., "Fat Hydrolysis," Ind. Eng. Chem., 41, 1982-1985(1949). https://doi.org/10.1021/ie50477a034
  12. Reinish, M. D., "Fat-splitting," J. Am. Oil Chem. Soc., 33, 516-520 (1956). https://doi.org/10.1007/BF02612311
  13. Albasi, C., Bertrand, N. and Riba, J. P., "Enzymatic Hydrolysis of Sunflower Oil in a Standardized Agitated Tank Reactor," Bioprocess Eng., 20, 77-81(1999). https://doi.org/10.1007/s004490050563
  14. Park, Y. K., Pastore, G. M. and Almedia, M. M. D., "Hydrolysis of Soybean Oil by a Combined Lipase System," J. Am. Oil Chem. Soc., 65, 252-254(1988). https://doi.org/10.1007/BF02636410
  15. Holliday, R. L., King, J. W. and List, G. R., "Hydrolysis of Vegetable Oils in Sub- and Supercritical Water," Ind. Eng. Chem. Res., 36, 932-935(1997). https://doi.org/10.1021/ie960668f
  16. Alenezi, R., Leeke, G. A., Santos, R. C. D. and Khan, A. R., "Hydrolysis Kinetics of Sunflower Oil under Subcritical Water Conditions," Chem. Eng. Res. Des., 87, 867-873(2009). https://doi.org/10.1016/j.cherd.2008.12.009
  17. Alenezi, R., Baig, M., Wang, J., Santos, R. and Leeke, G. A., "Continuous Flow Hydrolysis of Sunflower Oil for Biodiesel," Energy Source A., 32, 460-468(2010). https://doi.org/10.1080/15567030802612341
  18. King, J. W., Holliday, R. L. and List, G. R., "Hydrolysis of Soybean Oil in a Subcritical Water Flow Reactor," Green Chem., 1, 261-264(1999). https://doi.org/10.1039/a908861j
  19. Kocsisova, T., Juhasz, J. and Cvengros, J., "Hydrolysis of Fatty Acid Esters in Subcritical Water," Eur. J. Lipid Sci. Technol., 108, 652-658(2006). https://doi.org/10.1002/ejlt.200600061
  20. Kusdiana, D. and Saka, S., "Two-step Preparation for Catalytic-free Biodiesel Fuel Production," Appl. Biochem. Biotechnol., 113-116, 781-791(2004).
  21. http://en.wikipedia.org/wiki/Samgyeopsal.
  22. Korean Agency for Technology and Standards. KATS; KS H ISO 660:2007, Animal and Vegetable Fats and Oils - Determination of Acid Value and Acidity (2007).
  23. Shin, H.-Y., Ryu, J.-H., Park, S.-Y. and Bae, S.-Y., "Thermal Stability of Fatty Acids in Subcritical Water," J. Anal. App. Pyrolysis, 98, 250-253(2012). https://doi.org/10.1016/j.jaap.2012.08.003

Cited by

  1. Quality Characteristics of Horse Oil Extracted by Hot Water with Adding Green Tea Leaves vol.22, pp.3, 2018, https://doi.org/10.13050/foodengprog.2018.22.3.242