DOI QR코드

DOI QR Code

Defensive roles of Sdu1, a PPPDE superfamily member with ubiquitin C-terminal hydrolase activity, against thermal stress in Schizosaccharomyces pombe

카르복시 말단 유비퀴틴 가수분해 효소 활성 보유 PPPDE superfamily member인 Schizosaccharomyces pombe Sdu1의 열 스트레스에 대한 방어적 역할

  • Han, Hee (Department of Biochemistry, Kangwon National University) ;
  • Heo, Tae Young (Department of Biochemistry, Kangwon National University) ;
  • Ryu, In Wang (Department of Biological Sciences, Kangwon National University) ;
  • Kim, Kyunghoon (Department of Biological Sciences, Kangwon National University) ;
  • Lim, Chang-Jin (Department of Biochemistry, Kangwon National University)
  • 한희 (강원대학교 자연과학대학 생화학과) ;
  • 허태영 (강원대학교 자연과학대학 생화학과) ;
  • 류인왕 (강원대학교 자연과학대학 생명과학과) ;
  • 김경훈 (강원대학교 자연과학대학 생명과학과) ;
  • 임창진 (강원대학교 자연과학대학 생화학과)
  • Received : 2015.08.31
  • Accepted : 2015.11.04
  • Published : 2015.12.31

Abstract

The $sdu1^+$ gene encodes Sdu1, a PPPDE superfamily member of deubiquitinating enzymes (DUBs) in Schizosaccharomyces pombe. Sdu1 was previously shown to contain an actual ubiquitin C-terminal hydrolase (UCH) activity using the recombinant plasmid pYSTP which harbors the $sdu1^+$ gene. This work was designed to assess a thermotolerant role of Sdu1 against high incubation temperatures. In the temperature-shift experiments, the S. pombe cells harboring pYSTP grew much better after the shifts to $37^{\circ}C$ and $42^{\circ}C$, when compared with the vector control cells. After being shifted to $37^{\circ}C$ and $42^{\circ}C$ for 6 h, the S. pombe cells harboring pYSTP contained lower reactive oxygen species (ROS) levels, compared with the vector control cells. The nitric oxide (NO) levels of the S. pombe cells harboring pYSTP were slightly lower than those of the vector control cells in the absence or presence of the temperature shifting. The total glutathione (GSH) levels of the S. pombe cells harboring pYSTP were significantly higher than those of the vector control cells. Total superoxide dismutase (SOD) and GSH peroxidase activities were also higher in the S. pombe cells harboring pYSTP after the temperature shifts than in the vector control cells. In brief, the S. pombe Sdu1 plays a thermotolerant role against high incubation temperature through the down-regulation of ROS and NO and the up-regulation of total GSH content, total SOD and GSH peroxidase activities.

Schizosaccharomyces pombe $sdu1^+$ 유전자는 PPPDE superfamily member에 속하는 탈유비퀴틴화 효소인 Sdu1을 엔코딩한다. 이전 연구에서, $sdu1^+$ 유전자 포함 재조합 플라스미드 pYSTP를 사용하여 Sdu1이 카르복시 말단 유비퀴틴 가수분해 활성을 보유한다는 사실이 입증된 바 있다. 본 연구에서는, 높은 배양 온도에 대한 Sdu1의 열내성적 역할이 검토되었다. 온도 천이 실험에서, pYSTP 포함 S. pombe 세포들이 37도나 42도로 천이한 후에 벡터 대조 세포들보다 훨씬 더 잘 성장하였다. 37도나 42도로 천이 한 후 6시간 배양한 pYSTP 포함 S. pombe 세포들이 벡터 대조 세포들보다 낮은 활성산소종 수준을 나타내었다. pYSTP 포함 S. pombe 세포들이 온도 천이와 관계없이 벡터 대조 세포들보다 다소 낮은 일산화질소 수준을 나타내었다. pYSTP 포함 S. pombe 세포들이 벡터 대조 세포들보다 훨씬 높은 총 글루타치온 수준을 나타내었다. 온도천이 후의 총 수퍼옥시드 디스무타아제 및 글루타치온 과산화효소 활성들이 pYSTP 포함 S. pombe 세포들에서 더 높은 것으로 측정되었다. 요약하면, S. pombe Sdu1은 활성산소종과 일산화질소 수준은 낮추고, 총 글루타치온, 총 수퍼옥시드 디스무타아제 및 글루타치온 과산화효소 수준들은 증가시킴으로써 높은 배양 온도에 대한 열내성적 역할을 나타낸다.

Keywords

References

  1. Amerik, A.Y., Li, S.J., and Hochstrasser, M. 2000. Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol. Chem. 381, 981-992.
  2. Benassi, B., Marani, M., Loda, M., and Blandino, G. 2013. USP2a alters chemotherapeutic response by modulating redox. Cell Death Dis. 4, e812. https://doi.org/10.1038/cddis.2013.289
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chu, K.Y., Li, H., Wada, K., and Johnson, J.D. 2012. Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions. Diabetologia 55, 128-140. https://doi.org/10.1007/s00125-011-2323-1
  5. Cotto-Rios, X.M., Bekes, M., Chapman, J., Ueberheide, B., and Huang, T.T. 2012. Deubiquitinases as a signaling target of oxidative stress. Cell Rep. 2, 1475-1484. https://doi.org/10.1016/j.celrep.2012.11.011
  6. Fang, W., Price, M.S., Toffaletti, D.L., Tenor, J., Betancourt-Quiroz, M., Price, J.L., Pan, W.H., Liao, W.Q., and Perfect, J.R. 2012. Pleiotropic effects of deubiquitinating enzyme Ubp5 on growth and pathogenesis of Cryptococcus neoformans. PLoS One 7, e38326. https://doi.org/10.1371/journal.pone.0038326
  7. Iyer, L.M., Koonin, E.V., and Aravind, L. 2004. Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle 3, 1440-1450. https://doi.org/10.4161/cc.3.11.1206
  8. Kaitna, S., Schnabel, H., Schnabel, R., Hyman, A.A., and Glotzer, M. 2002. A ubiquitin C-terminal hydrolase is required to maintain osmotic balance and execute actin-dependent processes in the early C. elegans embryo. J. Cell Sci. 115(Pt 11), 2293-2302.
  9. Kanadia, R.N., Kuo, W.N., Mcnabb, M., and Botchway, A. 1998. Constitutive nitric oxide synthase in Saccharomyces cerevisiae. Biochem. Mol. Biol. Int. 45, 1081-1087.
  10. Kiani-Esfahani, A., Tavalaee, M., Deemeh, M.R., Hamiditabar, M., and Nasr-Esfahani, M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168-174. https://doi.org/10.3109/19396368.2012.681420
  11. Kig, C. and Temizkan, G. 2009. Nitric oxide as a signaling molecule in the fission yeast Schizosaccharomyces pombe. Protoplasma 238, 59-66. https://doi.org/10.1007/s00709-009-0074-3
  12. Kim, Y., Jo, H., and Lim, C.J. 2013. Deubiquitinating activity of Sdu1, a putative member of the PPPDE peptidase family, in Schizosaccharomyces pombe. Can. J. Microbiol. 59, 789-796. https://doi.org/10.1139/cjm-2013-0453
  13. Kim, J.Y., Lee, J.M., and Cho, J.Y. 2011. Ubiquitin C-terminal hydrolase-L3 regulates Smad1 ubiquitination and osteoblast differentiation. FEBS Lett. 585, 1121-1126. https://doi.org/10.1016/j.febslet.2011.03.053
  14. Kim, M.S., Ramakrishna, S., Lim, K.H., Kim, J.H., and Baek, K.H. 2011. Protein stability of mitochondrial superoxide dismutase SOD2 is regulated by USP36. J. Cell. Biochem. 112, 498-508. https://doi.org/10.1002/jcb.22940
  15. Kimura, Y., Yashiroda, H., Kudo, T., Koitabashi, S., Murata, S., Kakizuka, A., and Tanaka, K. 2009. An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell 137, 549-559. https://doi.org/10.1016/j.cell.2009.02.028
  16. Komander, D., Clague, M.J., and Urbe, S. 2009. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell. Biol. 10, 550-563. https://doi.org/10.1038/nrm2731
  17. Larsen, C.N., Krantz, B.A., and Wilkinson, K.D. 1998. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37, 3358-3368. https://doi.org/10.1021/bi972274d
  18. Lee, Y.Y., Kim, H.G., Jung, H.I., Shin, Y.H., Hong, S.M., Park, E.H., Sa, J.H., and Lim, C.J. 2002. Activities of antioxidant and redox enzymes in human normal hepatic and hepatoma cell lines. Mol. Cells 14, 305-311.
  19. Lee, B.H., Lee, M.J., Park, S., Oh, D.C., Elsasser, S., Chen, P.C., Gartner, C., Dimova, N., Hanna, J., Gygi, S.P., et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179-184. https://doi.org/10.1038/nature09299
  20. Meyer-Schwesinger, C., Meyer, T.N., Sievert, H., Hoxha, E., Sachs, M., Klupp, E.M., Munster, S., Balabanov, S., Carrier, L., Helmchen, U., et al. 2011. Ubiquitin C-terminal hydrolase-l1 activity induces polyubiquitin accumulation in podocytes and increases proteinuria in rat membranous nephropathy. Am. J. Pathol. 178, 2044-2057. https://doi.org/10.1016/j.ajpath.2011.01.017
  21. Myers, A.M., Tzagoloff, A., Kinney, D.M., and Lusty, C.J. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299-310. https://doi.org/10.1016/0378-1119(86)90028-4
  22. Nagai, H., Noguchi, T., Homma, K., Katagiri, K., Takeda, K., Matsuzawa, A., and Ichijo, H. 2009. Ubiquitin-like sequence in ASK1 plays critical roles in the recognition and stabilization by USP9X and oxidative stress-induced cell death. Mol. Cell 36, 805-818. https://doi.org/10.1016/j.molcel.2009.10.016
  23. Nakagawa, K., Saijo, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., Yokota, J., Muramatsu, M., Sato, K., Terada, M., and Tew, K.D. 1990. Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296-4301.
  24. Orlandi, I., Bettiga, M., Alberghina, L., Nystrom, T., and Vai, M. 2010. Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing. Biochim. Biophys. Acta. 1803, 630-638. https://doi.org/10.1016/j.bbamcr.2010.02.009
  25. Orlandi, I., Bettiga, M., Alberghina, L., and Vai, M. 2004. Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene expression and insurgence of oxidative stress response. J. Biol. Chem. 279, 6414-6425. https://doi.org/10.1074/jbc.M306464200
  26. Ramakrishna, S., Suresh, B., and Baek, K.H. 2011. The role of deubiquitinating enzymes in apoptosis. Cell Mol. Life Sci. 68, 15-26. https://doi.org/10.1007/s00018-010-0504-6
  27. Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D. 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363-397. https://doi.org/10.1146/annurev.biochem.78.082307.091526
  28. Ristic, G., Tsou, W.L., and Todi, S.V. 2014. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front. Mol. Neurosci. 7, 72.
  29. Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular $H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355. https://doi.org/10.1006/abbi.1993.1222
  30. Sherman, M.P., Aeberhard, E.E., Wong, V.Z., Griscavage, J.M., and Ignarro, L.J. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301-1308. https://doi.org/10.1006/bbrc.1993.1359
  31. Song, H.M., Lee, J.E., and Kim, J.H. 2014. Ubiquitin C-terminal hydrolase-L3 regulates EMT process and cancer metastasis in prostate cell lines. Biochem. Biophys. Res. Commun. 452, 722-727. https://doi.org/10.1016/j.bbrc.2014.08.144
  32. Stone, M., Hartmann-Petersen, R., Seeger, M., Bech-Otschir, D., Wallace, M., and Gordon, C. 2004. Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J. Mol. Biol. 344, 697-706. https://doi.org/10.1016/j.jmb.2004.09.057
  33. Tse, W.K., Eisenhaber, B., Ho, S.H., Ng, Q., Eisenhaber, F., and Jiang, Y.J. 2009. Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development. BMC Genomics 10, 637. https://doi.org/10.1186/1471-2164-10-637
  34. Wang, C.Y., Wen, W.L., Nilsson, D., Sunnerhagen, P., Chang, T.H., and Wang, S.W. 2012a. Analysis of stress granule assembly in Schizosaccharomyces pombe. RNA 18, 694-703. https://doi.org/10.1261/rna.030270.111
  35. Wang, H., Ying, Z., and Wang, G. 2012b. Ataxin-3 regulates aggresome formation of copper-zinc superoxide dismutase (SOD1) by editing K63-linked polyubiquitin chains. J. Biol. Chem. 287, 28576-28585. https://doi.org/10.1074/jbc.M111.299990
  36. Wicks, S.J., Haros, K., Maillard, M., Song, L., Cohen, R.E., Dijke, P.T., and Chantry, A. 2005. The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling. Oncogene 24, 8080-8084. https://doi.org/10.1038/sj.onc.1208944
  37. Wink, D.A., Miranda, K.M., and Espey, M.G. 2001. Cytotoxicity related to oxidative and nitrosative stress by nitric oxide. Exp. Biol. Med. 226, 621-623. https://doi.org/10.1177/153537020222600704
  38. Wolf, D.A. and Petroski, M.D. 2009. Rfu1: stimulus for the ubiquitin economy. Cell 137, 397-398. https://doi.org/10.1016/j.cell.2009.04.032